Advanced Science and Technology of Sintering


Book Description

This volume entitled Advanced Science and Technology of Sintering, contains the edited Proceedings of the Ninth World Round Table Conference on Sintering (IX WRTCS), held in Belgrade, Yugoslavia, September 1-4 1998. The gathering was one in a series of World Round Table Conferences on Sintering organised every four years by the Serbian Academy of Sciences and Arts (SASA) and the International Institute for the Science of Sintering (IISS). The World Round Table Conferences on Sintering have been traditionally held in Yugoslavia. The first meeting was organised in Herceg Novi in 1969 and since then they have regularly gathered the scientific elite in the science of sintering. It is not by chance that, at these conferences, G. C. Kuczynski, G. V. Samsonov, R. Coble, Ya. E. Geguzin and other great names in this branch of science presented their latest results making great qualitative leaps in the its development. Belgrade hosted this conference for the first time. It was chosen as a reminder that 30 years ago it was the place where the International Team for Sintering was formed, further growing into the International Institute for the Science of Sintering. The IX WRTCS lasted four days. It included 156 participants from 17 countries who presented the results of their theoretical and experimental research in 130 papers in the form of plenary lectures, oral presentations and poster sections.




Science of Sintering


Book Description

This volume, SCIENCE OF SINTERING: NEW DIRECTIONS FOR MATERIALS PROCESSING AND MICROSTRUCTURAL CONTROL, contains the edited Proceedings of the Seventh World Round Table Conference on Sintering, held in Herceg-Novi, Yugoslavia, Aug. 28 - Sept. 1, 1989. It was organized by the International Institute for the Science of Sintering (IISS), headquartered in Belgrade, Yugoslavia. Every fourth year since 1969, the Institute has organized such a Round Table Conference on Sintering; each has taken place at some selected location within Yugoslavia. A separate series of IISS Topical Sintering Symposia (Summer Schools) have also been held at four year intervals, but they have been offset by about two years, so they occur between the main Conferences. As a rule, the Topical Sintering Symposia have been devoted to more specific topics and they also take place in different countries. The aim of these Conferences and their related "Summer Schools" has been to bring together scientists from all over the world who work in various fields of science and technology concerned with sintering and sintered materials. A total of seven IISS Conferences have been held over the period 1969-1989, and they have been supplemented by the four Topical Sintering Symposia held in Yugoslavia, Poland, India and Japan (in 1975, 1979, 1983 and 1987, respectively). This most recent five day Conference addressed the fundamental scientific background as well as the technological state-of-the-art pertinent to science of sintering and high technology sintered materials.




Advances in Sintering Science and Technology


Book Description

This issue of the Ceramic Transactions compiles 41 papers covering a rich diversity of the sintering science and technology topics. These papers were presented at the International Conference on Sintering, November 16-20, 2008 in La Jolla, California. The Ceramic Transactions series contains a collection of papers dealing with issues in both traditional ceramics (i.e., glass, whitewares, refractories, and porcelain enamel) and advanced ceramics. Topics covered in the area of advanced ceramic include bioceramics, nanomaterials, composites, solid oxide fuel cells, mechanical properties and structural design, advanced ceramic coatings, ceramic armor, porous ceramics, and more.







Sintering Technology


Book Description

Based on the sintering conference held at the Pennsylvania State University, USA, this text presents advances in the application of sintering to the most important industrial materials. It offers results on both solid-state and microphase sintering as well as microstructure evolution, and introduces new applications, processes, materials and solutions to technical problems.




Sintering


Book Description

Sintering is the process of forming materials and components from a powder under the action of thermal energy. It is a key materials science subject: most ceramic materials and many specialist metal powder products for use in key industries such as electronics, automotive and aerospace are formed this way. Written by one of the leading experts in the field, this book offers an unrivalled introduction to sintering and sintering processes for students of materials science and engineering, and practicing engineers in industry. The book is unique in providing a complete grounding in the principles of sintering and equal coverage of the three key sintering processes: densification, grain growth and microstructure. Students and professional engineers alike will be attracted by the emphasis on developing a detailed understanding of the theory and practical processes of sintering, the balanced coverage of ceramic and metal sintering, and the accompanying examination questions with selected solutions. Delivering unrivalled depth of coverage on the basis of sintering, science, including thermodynamics and polycrystalline microstructure. Unique in its balanced coverage of the three key sintering elements - densification, grain growth and microstructure. A key reference for students and engineers in materials science and engineering, accompanied by examination questions and selected solutions.




Field-Assisted Sintering


Book Description

This book represents the first ever scientific monograph including an in-depth analysis of all major field-assisted sintering techniques. Until now, the electromagnetic field-assisted technologies of materials processing were lacking a systematic and generalized description in one fundamental publication; this work promotes the development of generalized concepts and of comparative analyses in this emerging area of materials fabrication. This book describes modern technologies for the powder processing-based fabrication of advanced materials. New approaches for the development of well-tailored and stable structures are thoroughly discussed. Since the potential of traditional thermo-mechanical methods of material treatment is limited due to inadequate control during processing, the book addresses ways to more accurately control the resultant material's structure and properties by an assisting application of electro-magnetic fields. The book describes resistance sintering, high-voltage consolidation, sintering by low-voltage electric pulses (including spark plasma sintering), flash sintering, microwave sintering, induction heating sintering, magnetic pulse compaction and other field-assisted sintering techniques. Includes an in-depth analysis of all major field-assisted sintering techniques; Explains new techniques and approaches for material treatment; Provides detailed descriptions of spark plasma sintering, microwave sintering, high-voltage consolidation, magnetic pulse compaction, and various other approaches when field-assisted treatment is applied.




Advances in Sintering Science and Technology II


Book Description

This publication provides an excellent one-stop resource for understanding the most important current issues in the research and advances in sintering science and technology.




Advances in Sintering Science and Technology II


Book Description

This publication provides an excellent one-stop resource for understanding the most important current issues in the research and advances in sintering science and technology.




Selective Laser Sintering Additive Manufacturing Technology


Book Description

Selective Laser Sintering Additive Manufacturing Technology is a unique and comprehensive guide to this emerging technology. It covers in detail the equipment, software algorithms and control systems, material preparations and process technology, precision control, simulation analysis, and provides examples of applications of selective laser sintering (SLS). SLS technology is one of the most promising advances in 3D printing due to the high complexity of parts it can form, short manufacturing cycle, low cost, and wide range of materials it is compatible with. Typical examples of SLS technology include SLS manufacturing casting molds, sand molds (core), injection molds with conformal cooling channels, and rapid prototyping of ceramic and plastic functional parts. It is already widely used in aviation, aerospace, medical treatment, machinery, and numerous other industries. Drawing on world-leading research, the authors provide state of the art descriptions of the technologies, tools, and techniques which are helping academics and engineers use SLS ever more effectively and widely. Provides instructions for how to accurately use SLS for forming Analyses the numerical simulation methods for key SLS technologies Addresses the use of SLS for a range of materials, including polymer, ceramic and coated sand powder