Site-Selective Catalysis


Book Description

The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science.The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience.Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.Review articles for the individual volumes are invited by the volume editors.Readership: research chemists at universities or in industry, graduate students




Shape-selective Catalysis


Book Description

When chemical reagents are combined some of the reagents remain unmixed when the reaction is complete. Catalysts can reduce the amount of unmixed reagents, making the reaction more efficient, and the shape of the catalyst can be an important consideration. This volume surveys the field and collects new research on both experimental and theoretical aspects of shape-selective catalysis and catalytic materials.




Shape Selective Catalysis in Industrial Applications


Book Description

A guide to current and potential industrial applications of shape selective zeolite catalysis. A manual for workers in the field--and a bridge of technology transfer among various industries--this reference explains the fundamentals of zeolite catalysis, and describes the relation between catalyst structure and catalytic activity, and methods of achieving molecular shape selectivity. Includes chemical reactions using shape selective catalysts, and industrial processes using shape selective zeolites. Potential applications of the technology are in areas such as oil production, shale oil, coal, natural gas, internal combustion engine modification, biomass conversion, and the fermentation, chemical, and waste recovery industries. Annotation(c) 2003 Book News, Inc., Portland, OR (booknews.com)




Zeolites and Mesoporous Materials at the Dawn of the 21st Century


Book Description

The Zeolites and Mesporous Materials at the Dawn of the 21st Century Proceedings are the expression of the oral and poster communications which where presented during the 13th International Zeolite Conference (IZC). They are subdivided into 32 thematic sessions starting from the genesis of materials to their applications through their characterisation. The paper volume contains the full texts of the 5 plenary and 6 keynote lectures and informative summaries of 150 oral and 540 poster presentations. These contributions have been selected among the 903 submissions received from a total of 57 countries! In order to gather all the communications in a handy document, the full texts of oral and poster presentations are available in CD-ROM. Besides the fields of zeolite science always represented at IZC (synthesis, characterisation, catalysis, etc¿), some subjects strengthened their position (mesoporous materials, theory and modelling), new areas emerge (advanced materials, environmental and life sciences) and older ones regain interest (natural zeolites). The understanding and development of the unique properties of porous materials relies on a unique blend of multidisciplinary knowledge: material science, with the implication of organic and colloid chemistry, to prepare micro- and mesoporous materials, surface and adsorption science sustained by theory and modelling to understand the peculiar behaviour of molecules in confined systems, special branches of catalysis, physics, chemical engineering and life science to design novel applications. The gathering of these elements is at the basis of a fruitful and evolutionary zeolite science, as it is hopefully reflected by these proceedings.




Catalysis and Zeolites


Book Description

Zeolites occur in nature and have been known for almost 250 years as alumino silicate minerals. Examples are clinoptilolite, mordenite, offretite, ferrierite, erionite and chabazite. Today, most of these and many other zeolites are of great interest in heterogeneous catalysis, yet their naturally occurring forms are of limited value as catalysts because nature has not optimized their properties for catalytic applications and the naturally occurring zeolites almost always contain undesired impurity phases. It was only with the advent of synthetic zeolites in the period from about 1948 to 1959 (thanks to the pioneering work of R. M. Barrer and R. M. Milton) that this class of porous materials began to playa role in catalysis. A landmark event was the introduction of synthetic faujasites (zeolite X at first, zeolite Y slightly later) as catalysts in fluid catalytic cracking (FCC) of heavy petroleum distillates in 1962, one of the most important chemical processes with a worldwide capacity of the order of 500 million t/a. Compared to the previously used amorphous silica-alumina catalysts, the zeolites were not only orders of magnitude more active, which enabled drastic process engineering improvements to be made, but they also brought about a significant increase in the yield of the target product, viz. motor gasoline. With the huge FCC capacity worldwide, the added value of this yield enhancement is of the order of 10 billion US $ per year.




Introduction to Zeolite Science and Practice


Book Description

Zeolites and related molecular sieves have quickly become important pathways to new opportunities in the fields of oil processing and petrochemical synthesis. The signs of intense activity in both industry and academia are evident: burgeoning papers and patent applications; increasing numbers of industrial zeolite-based processes and their rapid expansion into organic chemicals manufacturing; recent progress in zeolite accessibility range, matrix behaviour, lattice components and satellite structures; and the recognition that zeolites, which are stable and can be regenerated, may be incorporated into new, environmentally friendly processes. This volume offers a thorough, up-to-date introduction to zeolites and such related materials as crystalline aluminium phosphates and clays. Its 16 chapters, each written by specialists, provide detailed treatments of zeolite theory (including a review of major developments), zeolite laboratory and research practice, and zeolite industry applications. Students and individuals entering the field will find Introduction to Zeolite Science and Practice a thorough guidebook. Experienced researchers will appreciate its in-depth coverage of the zeolite spectrum, including the latest views on zeolite structure, characterization and applications.




Selective Oxidation by Heterogeneous Catalysis


Book Description

Selective Oxidation by Heterogeneous Catalysis covers one of the major areas of industrial petrochemical production, outlining open questions and new opportunities. It gives keys for the interpretation and analysis of data and design of new catalysts and reactions, and provides guidelines for future research. A distinctive feature of this book is the use of concept by example. Rather than reporting an overview of the literature results, the authors have selected some representative examples, the in-depth analysis of which makes it possible to clarify the fundamental, but new concepts necessary for a better understanding of the new opportunities in this field and the design of new catalysts or catalytic reactions. Attention is given not only to the catalyst itself, but also to the use of the catalyst inside the process, thus evidencing the relationship between catalyst design and engineering aspects of the process. This book provides suggestions for new innovative directions of research and indications on how to reconsider the field of selective oxidation from different perspectives, outlining that is not a mature field of research, but that new important breakthroughs can be derived from fundamental and applied research. Suggestions are offered on how to use less conventional approaches in terms of both catalyst design and analysis of the data.




Science and Technology in Catalysis


Book Description

(Selected) -- Plenary Lecures: New Catalysts for Controlled/Living Atom Transfer Radical Polymerization (ATRP; Catalysis and Applications of Gold Nanoparticles -- Oral Presentations: Ionic Liquids as New Solvents and Catalysis for Petrochemical and Refining Processes; High Throughput Experiment on the Investigation of Oxidation Catalysts with Gas Sensor System -- Poster Presentations: Development of a Low-Temperature Dioxin Decomposition Catalyst; Studies on Unique Properties of Polyolefins Prepared with Metallocene Catalyst Systems -- Index.




Nanostructured Catalysts


Book Description

The book gives a comprehensive up-to-date summary of the existing information on the structural/electronic properties, chemistry and catalytic properties of vanadium and molybdenum containing catalysts. It discusses the importance of nanoscience for the controlled synthesis of catalysts with functional properties and introduces the necessary background regarding surface properties and preparation techniques, leading from a textbook level to the current state of knowledge. Then follows an extensive survey and analysis of the existing open and patent literature - an essential knowledge source for the development of the new generation of partial oxidation catalysts. Important examples from current research on partial oxidation reactions are reviewed from experts in the field. The next chapter discusses the importance of 2- and 3-dimensional model systems for a fundamental understanding of the structure of transition metal oxide catalysts and its correlation to reactivity. Finally, an outlook on research opportunities within the area of partial oxidation reactions is presented.




Industrial Catalysis


Book Description

Now in it's 3rd Edition, Industrial Catalysis offers all relevant information on catalytic processes in industry, including many recent examples. Perfectly suited for self-study, it is the ideal companion for scientists who want to get into the field or refresh existing knowledge. The updated edition covers the full range of industrial aspects, from catalyst development and testing to process examples and catalyst recycling. The book is characterized by its practical relevance, expressed by a selection of over 40 examples of catalytic processes in industry. In addition, new chapters on catalytic processes with renewable materials and polymerization catalysis have been included. Existing chapters have been carefully revised and supported by new subchapters, for example, on metathesis reactions, refinery processes, petrochemistry and new reactor concepts. "I found the book accesible, readable and interesting - both as a refresher and as an introduction to new topics - and a convenient first reference on current industrial catalytic practise and processes." Excerpt from a book review for the second edition by P. C. H. Mitchell, Applied Organometallic Chemistry (2007)