Site-Specific Protein Labeling


Book Description

This detailed volume provides in-depth protocols for protein labeling techniques and applications, with an additional focus on general background information on the design and generation of the organic molecules used for the labeling step. Chapters provide protocols for labeling techniques and applications, with an additional focus on general background information on the design and generation of the organic molecules used for the labeling step. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Site-Specific Protein Labeling: Methods and Protocols provides a comprehensive overview on the most relevant and established labeling methodologies, and helps researchers to choose the most appropriate labeling method for their biological question.




Bioconjugate Techniques


Book Description

Bioconjugate Techniques, 2nd Edition, is the essential guide to the modification and cross linking of biomolecules for use in research, diagnostics, and therapeutics. It provides highly detailed information on the chemistry, reagent systems, and practical applications for creating labeled or conjugate molecules. It also describes dozens of reactions with details on hundreds of commercially available reagents and the use of these reagents for modifying or cross linking peptides and proteins, sugars and polysaccharides, nucleic acids and oligonucleotides, lipids, and synthetic polymers. A one-stop source for proven methods and protocols for synthesizing bioconjugates in the lab Step-by-step presentation makes the book an ideal source for researchers who are less familiar with the synthesis of bioconjugates More than 600 figures that visually describe the complex reactions associated with the synthesis of bioconjugates Includes entirely new chapters on the latest areas in the field of bioconjugation as follows: Microparticles and nanoparticlesSilane coupling agentsDendrimers and dendronsChemoselective ligationQuantum dotsLanthanide chelatesCyanine dyesDiscrete PEG compoundsBuckyballs,fullerenes, and carbon nanotubesMass tags and isotope tagsBioconjugation in the study of protein interactions




Noncanonical Amino Acids


Book Description




PET Chemistry


Book Description

Personalized medicine employing patient-based tailor-made therapeutic drugs is taking over treatment paradigms in a variety of ?elds in oncology and the central nervous system. The success of such therapies is mainly dependent on ef?cacious therapeutic drugs and a selective imaging probe for identi?cation of potential responders as well as therapy monitoring for an early bene?t assessment. Molecular imaging (MI) is based on the selective and speci?c interaction of a molecular probe with a biological target which is visualized through nuclear, magnetic resonance, near infrared or other methods. Therefore it is the method of choice for patient selection and therapy monitoring as well as for speci?c e- point monitoring in modern drug development. PET (positron emitting tomography), a nuclear medical imaging modality, is ideally suited to produce three-dimensional images of various targets or processes. The rapidly increasing demand for highly selective probes for MI strongly pushes the development of new PET tracers and PET chemistry. ‘PET chemistry’ can be de?ned as the study of positron-emitting compounds regarding their synthesis, structure, composition, reactivity, nuclear properties and processes and their properties in natural and - natural environments. In practice PET chemistry is strongly in?uenced by the unique properties of the radioisotopes used (e. g. , half-life, che- cal reactivity, etc. ) and integrates scienti?c aspects of nuclear-, organic-, inorganic- and biochemistry.




Total Chemical Synthesis of Proteins


Book Description

How to synthesize native and modified proteins in the test tube With contributions from a panel of experts representing a range of disciplines, Total Chemical Synthesis of Proteins presents a carefully curated collection of synthetic approaches and strategies for the total synthesis of native and modified proteins. Comprehensive in scope, this important reference explores the three main chemoselective ligation methods for assembling unprotected peptide segments, including native chemical ligation (NCL). It includes information on synthetic strategies for the complex polypeptides that constitute glycoproteins, sulfoproteins, and membrane proteins, as well as their characterization. In addition, important areas of application for total protein synthesis are detailed, such as protein crystallography, protein engineering, and biomedical research. The authors also discuss the synthetic challenges that remain to be addressed. This unmatched resource: Contains valuable insights from the pioneers in the field of chemical protein synthesis Presents proven synthetic approaches for a range of protein families Explores key applications of precisely controlled protein synthesis, including novel diagnostics and therapeutics Written for organic chemists, biochemists, biotechnologists, and molecular biologists, Total Chemical Synthesis of Proteins provides key knowledge for everyone venturing into the burgeoning field of protein design and synthetic biology.







Chemical Ligation


Book Description

Presenting a wide array of information on chemical ligation – one of the more powerful tools for protein and peptide synthesis – this book helps readers understand key methodologies and applications that protein therapeutic synthesis, drug discovery, and molecular imaging. • Moves from fundamental to applied aspects, so that novice readers can follow the entire book and apply these reactions in the lab • Presents a wide array of information on chemical ligation reactions, otherwise scattered across the literature, into one source • Features comprehensive and multidisciplinary coverage that goes from basics to advanced topics • Helps researchers choose the right chemical ligation technique for their needs




Enzyme-Mediated Ligation Methods


Book Description

This volume discusses different enzyme-catalyzed ligation methodologies for a variety of different chemical transformations. This book wants readers to view enzymes as a powerful tool in both academic and industrial research. Chapters in this book cover topics such as sortase A-mediated generation of site-specifically conjugated antibody-drug conjugates; omniligase-catalyzed inter- and intramolecular ligation; ligation catalyzed by microbial transglutaminase; peptide cyclization mediated by cyanobactin macrocyclases, butelase 1 and sortase A; using BioID as a tool for protein proximity labeling in living cells; and inducible, selective labeling of proteins via enzymatic oxidation of tyrosine. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, Enzyme-Mediated Ligation Methods is a valuable resource for students and scientists from different disciplines who are interested in using enzymatic strategies to answer their research questions.




Proximity Labeling


Book Description

This book provides detailed protocols and untold tips and tricks regarding the most well-known examples of proximity labeling methods, in which the protein of interest is genetically fused to or labeled with an enzyme that can generate short-lived reactive species to non-specifically label molecules within a certain radius of up to twenty nanometers. Beginning with peroxidase-based proximity labeling methods, the volume continues with BioID, proximity labeling methods that describe the proximity ligation assay to detect RNA-DNA interactions, UV cross-linking to demonstrate RNA-protein interactions, and how chemical and enzymatic reactivities can be improved upon DNA-DNA and protein-protein interactions, as well as “proximity-induced self-labeling,” where the radius of labeling is zero. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Proximity Labeling: Methods and Protocols serves as an ideal guide for researchers exploring the crucial roles that proximity-driven reactions play in biological systems.




Heterologous Gene Expression in E.coli


Book Description

Protein expression in a heterologous host is a cornerstone of biomedical research and of the biotechnology industry. Despite the advanced state of protein expression technology improvements are still needed. For example, membrane proteins constitute a significant percentage of the total cellular proteins but as a class are very difficult to overexpress, especially in a heterologous host. The ideal host would have the ability to express any protein, with relevant post-translational modifications, and be as easy to work with as E. coli. In Heterologous Gene Expression in E. coli: Methods and Protocols, expert scientists intimately familiar with the relevant techniques offer chapters that greatly expand the utility of this expression host. The contributions in this detailed volume describe methods, for example, to successfully express proteins in E. coli that would otherwise form aggregates in this host, to add post-translational modifications, to incorporate non-standard amino acid residues or moieties into E. coli expressed proteins, to identify binding partners, and to express membrane proteins. Written in the highly successful Methods in Molecular BiologyTM format, chapters include introductions to their respective subjects, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Practical and cutting-edge, Heterologous Gene Expression in E. coli: Methods and Protocols seeks to familiarize the researcher with the myriad of E. coli expression strains available and move E. coli closer to that ideal of the perfect host.