Method of Determining the Droplet Size Distribution in the Atomization of Liquids


Book Description

A laboratory method was developed for determining the droplet size distribution produced by atomizers. The atomizer is placed in a tube in which air is flowing at a velocity of 10 m/sec. The droplets flow downstream around a rod which has one flat surface covered with soot and a thin layer of magnesium. The rod is enclosed in a cylindrical shutter which can be rapidly opened to expose the soot-magnesium surface to the droplets which upon impact leave traces which can be studied microscopically. The instrument was tested with glycerine-water mixtures and an aerosol generator. The droplet distributions obtained were in good agreement with measurements made by two other methods.







Atomization and Sprays


Book Description

Atomization and Sprays examines the atomization of liquids and characteristics of sprays. It explains the physical processes of atomization as well as guidelines for designing atomizers. In addition, it demonstrates how the importance of the size and velocity of a particle contributes to improved spray characterization. Coverage includes general considerations, drop size distribution of sprays, flow in atomizers, atomizer performance, external spray characteristics, drop evaporation, and drop sizing methods.




Atomization and Sprays


Book Description

The second edition of this long-time bestseller provides a framework for designing and understanding sprays for a wide array of engineering applications. The text contains correlations and design tools that can be easily understood and used in relating the design of atomizers to the resulting spray behavior. Written to be accessible to readers with a modest technical background, the emphasis is on application rather than in-depth theory. Numerous examples are provided to serve as starting points for using the information in the book. Overall, this is a thoroughly updated edition that still retains the practical focus and readability of the original work by Arthur Lefebvre.




Handbook of Atomization and Sprays


Book Description

Atomization and sprays are used in a wide range of industries: mechanical, chemical, aerospace, and civil engineering; material science and metallurgy; food; pharmaceutical, forestry, environmental protection; medicine; agriculture; meteorology and others. Some specific applications are spray combustion in furnaces, gas turbines and rockets, spray drying and cooling, air conditioning, powdered metallurgy, spray painting and coating, inhalation therapy, and many others. The Handbook of Atomization and Sprays will bring together the fundamental and applied material from all fields into one comprehensive source. Subject areas included in the reference are droplets, theoretical models and numerical simulations, phase Doppler particle analysis, applications, devices and more.







Science and Engineering of Droplets:


Book Description

This is the first book to encompass the fundamental phenomenon, principles, and processes of discrete droplets of both normal liquids and melts. It provides the reader with the science and engineering of discrete droplets, and provides researchers, scientists and engineers with the latest developments in the field. The book begins with a systematic review of various processes and techniques, along with their applications and associations with materials systems. This is followed by a description of the phenomena and principles in droplet processes. Correlations, calculations, and numerical modeling of the droplet processes provide insight into the effects of process parameters on droplet properties for optimization of atomizer design. Droplets are found in the areas of metallurgy, materials, automotive, aerospace, medicine, food processing, agriculture, and power generation, and encountered in a huge range of engineering applications.




Droplets and Sprays


Book Description

Providing a clear and systematic description of droplets and spray dynamic models, this book maximises reader insight into the underlying physics of the processes involved, outlines the development of new physical and mathematical models and broadens understanding of interactions between the complex physical processes which take place in sprays. Complementing approaches based on the direct application of computational fluid dynamics (CFD), Droplets and Sprays treats both theoretical and practical aspects of internal combustion engine process such as the direct injection of liquid fuel, subcritical heating and evaporation. Including case studies that illustrate the approaches relevance to automotive applications, it is also anticipated that the described models can find use in other areas such as in medicine and environmental science.




Fluid Dynamics and Transport of Droplets and Sprays


Book Description

This book discusses the theoretical foundations of spray and droplet applications relevant to the technology for active control of sprays applied to new products and applications, improved product performance, cost reductions, and improved environmental outcomes. It also covers theory related to power and propulsion; materials processing and manufacturing technologies including droplet-based net form processing, coating, and painting; medication; pesticides and insecticides; and other consumer uses.




Industrial Sprays and Atomization


Book Description

An extensive critical compilation of the wide range of manufacturing processes that involve the application of spray technology, this book covers design of atomizers as well as the performance of plant and their corresponding spray systems. The needs of practising engineers from different disciplines: project managers, and works, maintenance and design engineers are catered for. Of interest to researchers in the field of liquid sprays, the book includes outlines of the contemporary and possible future research and challenges in the different fields of application and deals with: • sprays and their production; • sprays in industrial production processes; • processes involving vaporisation and cooling or cleaning of gases; • spray-surface impact processes; • fuel sprays for fixed plant; • spraying of hot surfaces for steel making and other metals; • spraying of molten metals. Guidance is given for the analysis and interpretation of experimental data obtained using different measurement techniques.