Size Effects in Thin Films


Book Description

A complete and comprehensive study of transport phenomena in thin continuous metal films, this book reviews work carried out on external-surface and grain-boundary electron scattering and proposes new theoretical equations for transport properties of these films. It presents a complete theoretical view of the field, and considers imperfection and impurity effects.




Size Effects in Thin Films


Book Description










The Physical Properties of Thin Metal Films


Book Description

Thin films of conducting materials, such as metals, alloys and semiconductors are currently in use in many areas of science and technology, particularly in modern integrated circuit microelectronics that require high quality thin films for the manufacture of connection layers, resistors and ohmic contacts. These conducting films are also important for fundamental investigations in physics, radio-physics and physical chemistry. Physical Properties of Thin Metal Films provides a clear presentation of the complex physical properties particular to thin conducting films and includes the necessary theory, confirming experiments and applications. The volume will be an invaluable reference for graduates, engineers and scientists working in the electronics industry and fields of pure and applied science.




Physics of Thin Films


Book Description

Physics of Thin Films: Advances in Research and Development, Volume 6 reviews the rapid progress that has been made in research and development concerning the physics of thin films, with emphasis on metallic films. Topics covered include anodic oxide films, thin metal films and wires, and multilayer magnetic films. This volume is comprised of five chapters and begins with a discussion on the dielectric properties and the technique of plasma anodization which are relevant to the applications of anodic oxide films in electronic devices. Conduction, polarization, and dielectric breakdown effects are also considered. The next chapter examines studies on size-dependent electrical conduction in thin metal films and wires, paying particular attention to both classical and quantum size effects and some of the anisotropic characteristics of epitaxial metal films. The reader is then introduced to the optical properties of metal films and interactions in multilayer magnetic films. This text concludes with a chapter that looks at diffusion in metallic films and presents experimental results for phase-forming systems, miscible systems, and lateral diffusion. This monograph will be of value to students and practitioners of physics, especially those interested in thin films.




Grain-size Effects in Nanoscaled Electrolyte and Cathode Thin Films for Solid Oxide Fuel Cells (SOFC)


Book Description

Due to their high energy conversion efficiencies and low emissions, Solid Oxide Fuel Cells (SOFCs) show promise as a replacement for combustion-based electrical generators at all sizes. Further increase of SOFC efficiency can be achieved by microstructural optimization of the oxygen-ion conducting electrolyte and the mixed ionic-electronic conducting cathode. By application of nanoscaled thin films, the exceptionally high efficiency allows the realization of mobile SOFCs.




Nanoscale Phenomena in Ferroelectric Thin Films


Book Description

This book presents the recent advances in the field of nanoscale science and engineering of ferroelectric thin films. It comprises two main parts, i.e. electrical characterization in nanoscale ferroelectric capacitor, and nano domain manipulation and visualization in ferroelectric materials. Well known le'adingexperts both in relevant academia and industry over the world (U.S., Japan, Germany, Switzerland, Korea) were invited to contribute to each chapter. The first part under the title of electrical characterization in nanoscale ferroelectric capacitors starts with Chapter 1, "Testing and characterization of ferroelectric thin film capacitors," written by Dr. I. K. Yoo. The author provides a comprehensive review on basic concepts and terminologies of ferroelectric properties and their testing methods. This chapter also covers reliability issues in FeRAMs that are crucial for commercialization of high density memory products. In Chapter 2, "Size effects in ferroelectric film capacitors: role ofthe film thickness and capacitor size," Dr. I. Stolichnov discusses the size effects both in in-plane and out-of-plane dimensions of the ferroelectric thin film. The author successfully relates the electric performance and domain dynamics with proposed models of charge injection and stress induced phase transition. The author's findings present both a challenging problem and the clue to its solution of reliably predicting the switching properties for ultra-thin ferroelectric capacitors. In Chapter 3, "Ferroelectric thin films for memory applications: nanoscale characterization by scanning force microscopy," Prof. A.




Thin Film Materials


Book Description

Thin film mechanical behavior and stress presents a technological challenge for materials scientists, physicists and engineers. This book provides a comprehensive coverage of the major issues and topics dealing with stress, defect formation, surface evolution and allied effects in thin film materials. Physical phenomena are examined from the continuum down to the sub-microscopic length scales, with the connections between the structure of the material and its behavior described. Theoretical concepts are underpinned by discussions on experimental methodology and observations. Fundamental scientific concepts are embedded through sample calculations, a broad range of case studies with practical applications, thorough referencing, and end of chapter problems. With solutions to problems available on-line, this book will be essential for graduate courses on thin films and the classic reference for researchers in the field.




Diffusion Processes in Advanced Technological Materials


Book Description

This new game book for understanding atoms at play aims to document diffusion processes and various other properties operative in advanced technological materials. Diffusion in functional organic chemicals, polymers, granular materials, complex oxides, metallic glasses, and quasi-crystals among other advanced materials is a highly interactive and synergic phenomenon. A large variety of atomic arrangements are possible. Each arrangement affects the performance of these advanced, polycrystalline multiphase materials used in photonics, MEMS, electronics, and other applications of current and developing interest. This book is written by pioneers in industry and academia for engineers, chemists, and physicists in industry and academia at the forefront of today's challenges in nanotechnology, surface science, materials science, and semiconductors.