Sliding Wear and Fretting Behaviour of Electrodeposited [gamma]-phase Zinc-nickel Coatings as a Replacement for Electrodeposited Cadmium Coatings


Book Description

"Electrodeposited Zn-Ni coatings is used as a sacrificial corrosion protective coating for steel in the automotive industry. Recently, the aerospace industry has taken an interest in these coatings due to the increasing restrictions on cadmium. Many studies have been made on improving the plating process and corrosion properties of Zn-Ni coatings. Although these coatings encounter tribological situations, there is still an information gap on their tribological behaviour. Therefore, the tribological behaviour of Zn-Ni coatings are studied in terms of fretting and sliding wear in this work and are compared with cadmium.Tribological studies of the fretting and sliding wear behaviour on Zn-Ni and Cd coatings were conducted. For Zn-Ni coating, studies showed that the surface morphology had a strong effect on the velocity accommodation mechanisms. In the stick or partial slip regime, the smoother and dense coating formed cracks on the surface in order to accommodate wear, whereas for the rougher coating, only asperities of the coating were deformed, as the morphology of the coating allowed some degree of elastic deformation. In the mixed slip and the gross slip regimes, shearing of the third bodies accommodated the velocity in both cases. When slipping occurred, the rougher coating also showed higher wear, as the morphology of the coating allowed easier detachment, as cracks and through thickness defects were present where the agglomerates of the coating meets. When compared with Cd coatings, the material properties affected the fretting behaviour strongly. Cadmium coating remained in the partial slip regime despite changing the displacement amplitude, due to the mechanical properties and crystal structure of cadmium. Plastic flow of the coating material accommodated the velocity for cadmium coating, as cadmium has a hexagonal crystal structure and is very ductile. Although cadmium remained in the stick and partial slip regime, increasing the displacement amplitude increased the friction and wear of the coating. When a high displacement amplitude was used, cadmium coating was removed from the center of the contact and the substrate was exposed.Sliding wear studies of the effect of normal load, surface morphology and humidity for Zn-Ni coatings were conducted and the results were compared with Cd. Formation of an oxide layer appeared to have a strong effect on the sliding wear behaviour, the smoother and dense coating was subjected to test performed in various humidity conditions. At high humidity, a continuous nanocrystalline ZnO film was formed on the surface of the wear track, which helped mitigate wear and stabilize the friction. This is because velocity was accommodated through shearing of the nanocrystalline film. In contrast, at zero humidity level, a prow formed due to adhesive wear behaviour. Velocity was accommodated by ploughing of the wear track and shearing of the particles. When tests were performed in high humidity, increasing the normal load caused breaking of the oxide layer that was formed on the wear track, which resulted in more adhesive wear. At low normal loads, the rougher coating showed more wear than the smoother coating. At the highest normal load, the wear of the smoother coating became more severe as the lack of a continuous oxide film caused more adhesive wear. The rougher coating was less sensitive to increase of initial Hertzian contact stress, as the surface morphology of the coating allowed some degree of elastic and plastic deformation. When compared to Cd, humidity also affected the sliding wear behaviour of Cd due to change in the composition of the third bodies. Decreasing the humidity was beneficial to cadmium but detrimental to Zn-Ni. Due to material properties, a lower CoF was observed for cadmium, while a higher wear resistance was observed in Zn-Ni coating." --




Sliding Wear and Fretting Behaviour of Electrodeposited Γ-phase Zinc-nickel Coatings as a Replacement for Electrodeposited Cadmium Coatings


Book Description

Electrodeposited Zn-Ni coatings is used as a sacrificial corrosion protective coating for steel in the automotive industry. Recently, the aerospace industry has taken an interest in these coatings due to the increasing restrictions on cadmium. Many studies have been made on improving the plating process and corrosion properties of Zn-Ni coatings. Although these coatings encounter tribological situations, there is still an information gap on their tribological behaviour. Therefore, the tribological behaviour of Zn-Ni coatings are studied in terms of fretting and sliding wear in this work and are compared with cadmium.Tribological studies of the fretting and sliding wear behaviour on Zn-Ni and Cd coatings were conducted. For Zn-Ni coating, studies showed that the surface morphology had a strong effect on the velocity accommodation mechanisms. In the stick or partial slip regime, the smoother and dense coating formed cracks on the surface in order to accommodate wear, whereas for the rougher coating, only asperities of the coating were deformed, as the morphology of the coating allowed some degree of elastic deformation. In the mixed slip and the gross slip regimes, shearing of the third bodies accommodated the velocity in both cases. When slipping occurred, the rougher coating also showed higher wear, as the morphology of the coating allowed easier detachment, as cracks and through thickness defects were present where the agglomerates of the coating meets. When compared with Cd coatings, the material properties affected the fretting behaviour strongly. Cadmium coating remained in the partial slip regime despite changing the displacement amplitude, due to the mechanical properties and crystal structure of cadmium. Plastic flow of the coating material accommodated the velocity for cadmium coating, as cadmium has a hexagonal crystal structure and is very ductile. Although cadmium remained in the stick and partial slip regime, increasing the displacement amplitude increased the friction and wear of the coating. When a high displacement amplitude was used, cadmium coating was removed from the center of the contact and the substrate was exposed.Sliding wear studies of the effect of normal load, surface morphology and humidity for Zn-Ni coatings were conducted and the results were compared with Cd. Formation of an oxide layer appeared to have a strong effect on the sliding wear behaviour, the smoother and dense coating was subjected to test performed in various humidity conditions. At high humidity, a continuous nanocrystalline ZnO film was formed on the surface of the wear track, which helped mitigate wear and stabilize the friction. This is because velocity was accommodated through shearing of the nanocrystalline film. In contrast, at zero humidity level, a prow formed due to adhesive wear behaviour. Velocity was accommodated by ploughing of the wear track and shearing of the particles. When tests were performed in high humidity, increasing the normal load caused breaking of the oxide layer that was formed on the wear track, which resulted in more adhesive wear. At low normal loads, the rougher coating showed more wear than the smoother coating. At the highest normal load, the wear of the smoother coating became more severe as the lack of a continuous oxide film caused more adhesive wear. The rougher coating was less sensitive to increase of initial Hertzian contact stress, as the surface morphology of the coating allowed some degree of elastic and plastic deformation. When compared to Cd, humidity also affected the sliding wear behaviour of Cd due to change in the composition of the third bodies. Decreasing the humidity was beneficial to cadmium but detrimental to Zn-Ni. Due to material properties, a lower CoF was observed for cadmium, while a higher wear resistance was observed in Zn-Ni coating.




Wear of Materials


Book Description

The 14th International Conference on Wear of Materials took place in Washington, DC, USA, 30 March - 3 April 2003. These proceedings contain over two-hundred peer reviewed papers containing the best research, technical developments and engineering case studies from around the world. Biomaterials and nano-tribology receive special attention in this collection reflecting the general trends in the field. Further highlights include a focus on the new generation of instrumentation to probe wear at increasingly small scales. Approximately ninety communications and case studies, a popular format for the academic community have also been included, enabling the inclusion of the most up-to-date research. Over 200 peer-reviewed papers including hot topics such as biomaterials and nano-tribology Keeping you up-to-date with the latest research from leading experts Includes communications and case studies




Tribocorrosion of Passive Metals and Coatings


Book Description

Tribocorrosion causes the degradation or alteration of materials through the combined action of corrosion and wear. It limits the performance and life-time of installations, machines and devices with moving parts, and controls certain manufacturing processes such as chemical–mechanical polishing. The effects of tribocorrosion are most pronounced on passive metals which owe their corrosion resistance to a thin protecting oxide film. Most corrosion-resistant engineering alloys belong to this category.This book provides an introduction to the developing field of tribocorrosion and an overview of the latest research. Part one reviews basic notions of corrosion and tribology, before presenting the most recent results on the growth and structure of passive oxide films. Tribocorrosion mechanisms under fretting, sliding and erosion conditions, respectively, are then discussed. Part two focuses on methods for measuring and preventing tribocorrosion. It includes chapters on electrochemical techniques, the design of tribocorrosion test equipment, data evaluation and the optimisation of materials' properties for tribocorrosion systems. Part three presents a selection of tribocorrosion problems in engineering and medicine. Three chapters address the tribocorrosion of medical implants including test methods and clinical implications. Other chapters examine tribocorrosion issues in nuclear power plants, marine environments, automotive cooling circuits, elevated-temperature metal working and chemical–mechanical polishing.With its distinguished editors and international team of expert contributors Tribocorrosion of passive metals and coatings is an invaluable reference tool for engineers and researchers in industry and academia confronted with tribocorrosion problems. - Comprehensively reviews current research on the tribocorrosion of passive metals and coatings, with particular reference to the design of tribocorrosion test equipment, data evaluation and the optimisation of materials' properties for tribocorrosion systems - Chapters discuss tribocorrosion mechanisms under fretting, sliding and erosion conditions before focussing on methods for measuring and preventing tribocorrosion - Includes a comprehensive selection of tribocorrosion problems in engineering and medicine, such as the tribocorrosion of medical implants, and tribocorrosion issues in nuclear power plants, marine environments, automotive cooling circuits and elevated-temperature metal working




Tribology of Ceramics and Composites


Book Description

This book helps students and practicing scientists alike understand that a comprehensive knowledge about the friction and wear properties of advanced materials is essential to further design and development of new materials. With important introductory chapters on the fundamentals, processing, and applications of tribology, the book then examines in detail the nature and properties of materials, the friction and wear of structural ceramics, bioceramics, biocomposites, and nanoceramics, as well as lightweight composites and the friction and wear of ceramics in a cryogenic environment.




Friction and Wear of Ceramics


Book Description

This book covers the area of tribology broadly, providing important introductory chapters to fundamentals, processing, and applications of tribology. The book is designed primarily for easy and cohesive understanding for students and practicing scientists pursuing the area of tribology with focus on materials. This book helps students and practicing scientists alike understand that a comprehensive knowledge about the friction and wear properties of advanced materials is essential to further design and development of new materials. The description of the wear micromechanisms of various materials will provide a strong background to the readers as how to design and develop new tribological materials. This book also places importance on the development of new ceramic composites in the context of tribological applications. Some of the key features of the book include: Fundamentals section highlights the salient issues of ceramic processing and mechanical properties of important oxide and non-oxide ceramic systems; State of the art research findings on important ceramic composites are included and an understanding on the behavior of silicon carbide (SiC) based ceramic composites in dry sliding wear conditions is presented as a case study; Erosion wear behavior of ceramics, in which case studies on high temperature erosion behavior of SiC based composites and zirconium diboride (ZrB2) based composites is also covered; Wear behavior of ceramic coatings is rarely discussed in any tribology related books therefore a case study explaining the abrasion wear behavior of WC-Co coating is provided. Finally an appendix chapter is included in which a collection of several types of questions including multiple choice, short answer and long answer are provided.




Metals Abstracts


Book Description




Titanium Dioxide


Book Description

This book presents a comprehensive overview of titanium dioxide, including recent advances and applications. It focuses on the compound’s uses in environmental remediation, photocatalytic materials, rechargeable lithium-ion batteries, thin films, energy storage, semiconductors, and much more. This volume is a useful resource for researchers, scientists, engineers, and students.




Wear of Materials


Book Description