Small and Short-Range Radar Systems


Book Description

Radar Expert, Esteemed Author Gregory L. Charvat on CNN and CBSAuthor Gregory L. Charvat appeared on CNN on March 17, 2014 to discuss whether Malaysia Airlines Flight 370 might have literally flown below the radar. He appeared again on CNN on March 20, 2014 to explain the basics of radar, and he explored the hope and limitations of the technology i




Small and Short-Range Radar Systems


Book Description

Radar Expert, Esteemed Author Gregory L. Charvat on CNN and CBSAuthor Gregory L. Charvat appeared on CNN on March 17, 2014 to discuss whether Malaysia Airlines Flight 370 might have literally flown below the radar. He appeared again on CNN on March 20, 2014 to explain the basics of radar, and he explored the hope and limitations of the technology i




Short-Range Micro-Motion Sensing with Radar Technology


Book Description

Human hands are natural tools for performing actions and gestures that interact with the physical world. Radar technology allows for touchless wireless gesture sensing by transmitting radio frequency (RF) signals to the target, analyzing the backscattering reflections to extract the target's movements, and thereby accurately detecting gestures for Human Computer Interaction (HCI). A key advantage of this technology is that it allows interaction with machines without any need to attach a sensing device to the hands. Led by researchers from Google's Project Soli, the authors introduce the concept and underpinning technology, cover all design phases, and provide researchers and professionals with the latest advances and innovations in microwave and millimeter wave radar sensing to capture relative movements such as micro gestures.




Small and Short-Range Radar Systems


Book Description

Radar Expert, Esteemed Author Gregory L. Charvat on CNN and CBS Author Gregory L. Charvat appeared on CNN on March 17, 2014 to discuss whether Malaysia Airlines Flight 370 might have literally flown below the radar. He appeared again on CNN on March 20, 2014 to explain the basics of radar, and he explored the hope and limitations of the technology involved in the search for Flight 370 on CBS on March 22, 2014. Get His Book Now Coupling theory with reality, from derivation to implementation of actual radar systems, Small and Short-Range Radar Systems analyzes and then provides design procedures and working design examples of small and short-range radar systems. Discussing applications from automotive to through-wall imaging, autonomous vehicle, and beyond, the practical text supplies high-level descriptions, theoretical derrivations, back-of-envelope calculations, explanations of processing algorithms, and case studies for each type of small radar system covered, including continuous wave (CW), ultrawideband (UWB) impulse, linear frequency modulation (FM), linear rail synthetic aperture radar (SAR), and phased array. This essential reference: Explains how to design your own radar devices Demonstrates how to process data from small radar sensors Provides real-world, measured radar data to test algorithms before investing development time Complete with downloadable MATLAB® scripts and actual radar measurements, Small and Short-Range Radar Systems empowers you to rapidly develop small radar technology for your application.




Weather Radar Technology Beyond NEXRAD


Book Description

Weather radar is a vital instrument for observing the atmosphere to help provide weather forecasts and issue weather warnings to the public. The current Next Generation Weather Radar (NEXRAD) system provides Doppler radar coverage to most regions of the United States (NRC, 1995). This network was designed in the mid 1980s and deployed in the 1990s as part of the National Weather Service (NWS) modernization (NRC, 1999). Since the initial design phase of the NEXRAD program, considerable advances have been made in radar technologies and in the use of weather radar for monitoring and prediction. The development of new technologies provides the motivation for appraising the status of the current weather radar system and identifying the most promising approaches for the development of its eventual replacement. The charge to the committee was to determine the state of knowledge regarding ground-based weather surveillance radar technology and identify the most promising approaches for the design of the replacement for the present Doppler Weather Radar. This report presents a first look at potential approaches for future upgrades to or replacements of the current weather radar system. The need, and schedule, for replacing the current system has not been established, but the committee used the briefings and deliberations to assess how the current system satisfies the current and emerging needs of the operational and research communities and identified potential system upgrades for providing improved weather forecasts and warnings. The time scale for any total replacement of the system (20- to 30-year time horizon) precluded detailed investigation of the designs and cost structures associated with any new weather radar system. The committee instead noted technologies that could provide improvements over the capabilities of the evolving NEXRAD system and recommends more detailed investigation and evaluation of several of these technologies. In the course of its deliberations, the committee developed a sense that the processes by which the eventual replacement radar system is developed and deployed could be as significant as the specific technologies adopted. Consequently, some of the committee's recommendations deal with such procedural issues.




Arduino based RADAR System


Book Description

Research Paper (postgraduate) from the year 2014 in the subject Electrotechnology, grade: B.Tech, , language: English, abstract: RADAR is an object detection system which uses radio waves to determine the range, altitude, direction, or speed of objects. The radar dish or antenna transmits pulses of radio waves or microwaves which bounce off any object in their path. Arduino is a single-board microcontroller to make using electronics in multidisciplinary projects more accessible. This project aims at making a RADAR that is efficient, cheaper and reflects all the possible techniques that a radar consists of.




Deep Learning Applications of Short-Range Radars


Book Description

This exciting new resource covers various emerging applications of short range radars, including people counting and tracking, gesture sensing, human activity recognition, air-drawing, material classification, object classification, vital sensing by extracting features such as range-Doppler Images (RDI), range-cross range images, Doppler Spectrogram or directly feeding raw ADC data to the classifiers. The book also presents how deep learning architectures are replacing conventional radar signal processing pipelines enabling new applications and results. It describes how deep convolutional neural networks (DCNN), long-short term memory (LSTM), feedforward networks, regularization, optimization algorithms, connectionist This exciting new resource presents emerging applications of artificial intelligence and deep learning in short-range radar. The book covers applications ranging from industrial, consumer space to emerging automotive applications. The book presents several human-machine interface (HMI) applications, such as gesture recognition and sensing, human activity classification, air-writing, material classification, vital sensing, people sensing, people counting, people localization and in-cabin automotive occupancy and smart trunk opening. The underpinnings of deep learning are explored, outlining the history of neural networks and the optimization algorithms to train them. Modern deep convolutional neural network (DCNN), popular DCNN architectures for computer vision and their features are also introduced. The book presents other deep learning architectures, such as long-short term memory (LSTM), auto-encoders, variational auto-encoders (VAE), and generative adversarial networks (GAN). The application of human activity recognition as well as the application of air-writing using a network of short-range radars are outlined. This book demonstrates and highlights how deep learning is enabling several advanced industrial, consumer and in-cabin applications of short-range radars, which weren't otherwise possible. It illustrates various advanced applications, their respective challenges, and how they are been addressed using different deep learning architectures and algorithms.




Precision FMCW Short-Range Radar for Industrial Applications


Book Description

This book describes methods for making accurate radar measurements of short distances in applications where physical contact with materials is impractical. Sources of error are identified, and methods of reducing these errors are described. Practical test procedures for measuring instruments are also provided. Much of the book is dedicated to providing radar engineers with practical applications, detailing the conditions, equipment, and approach of experimental estimation. With the help of computer simulation, the achievable advantages in accuracy of radar range measurement with various approaches are revealed and quantitatively estimated. Readers are also provided with methods of random process theory and mathematical statistics, along with functional analysis and optimization.







Handbook of Driver Assistance Systems


Book Description

This fundamental work explains in detail systems for active safety and driver assistance, considering both their structure and their function. These include the well-known standard systems such as Anti-lock braking system (ABS), Electronic Stability Control (ESC) or Adaptive Cruise Control (ACC). But it includes also new systems for protecting collisions protection, for changing the lane, or for convenient parking. The book aims at giving a complete picture focusing on the entire system. First, it describes the components which are necessary for assistance systems, such as sensors, actuators, mechatronic subsystems, and control elements. Then, it explains key features for the user-friendly design of human-machine interfaces between driver and assistance system. Finally, important characteristic features of driver assistance systems for particular vehicles are presented: Systems for commercial vehicles and motorcycles.