Smart Agriculture an Approach Towards Better Agriculture Management


Book Description

This edited book, Smart Agriculture: An Approach towards Better Agriculture Management aims to present utilization of advanced technologies towards the better management of Agriculture requirements. The book is triggered by ubiquitous applications of sensors and actuators, and the real-world challenges and complexities to the Wireless Sensors and Actuator Networks¿ (WSAN) application. Agriculture is a very vast domain. This book is providing coverage of some of the aspects of the agriculture like Introduction to the concept of Smart Agriculture, Automatic Irrigation Management, Water Management, use of advanced technology like GIS towards Agriculture and Agricultural Ontologies to provide semantic understanding for computing devices.




Agricultural Internet of Things and Decision Support for Precision Smart Farming


Book Description

Agricultural Internet of Things and Decision Support for Smart Farming reveals how a set of key enabling technologies (KET) related to agronomic management, remote and proximal sensing, data mining, decision-making and automation can be efficiently integrated in one system. Chapters cover how KETs enable real-time monitoring of soil conditions, determine real-time, site-specific requirements of crop systems, help develop a decision support system (DSS) aimed at maximizing the efficient use of resources, and provide planning for agronomic inputs differentiated in time and space. This book is ideal for researchers, academics, post-graduate students and practitioners who want to embrace new agricultural technologies. - Presents the science behind smart technologies for agricultural management - Reveals the power of data science and how to extract meaningful insights from big data on what is most suitable based on individual time and space - Proves how advanced technologies used in agriculture practices can become site-specific, locally adaptive, operationally feasible and economically affordable




Climate-smart Agriculture Sourcebook


Book Description

"Climate-smart agriculture, forestry and fisheries (CSA), contributes to the achievement of sustainable development goals. It integrates the three dimensions of sustainable development (economic, social and environmental) by jointly addressing food security and climate challenges. It is composed of three main pillars: sustainably increasing agricultural productivity and incomes; adapting and building resilience to climate change; reducing and/or removing greenhouse gases emissions, where possible. The purpose of the sourcebook is to further elaborate the concept of CSA and demonstrate its potential, as well as limitations. It aims to help decision makers at a number of levels (including political administrators and natural resource managers) to understand the different options that are available for planning, policies and investments and the practices that are suitable for making different agricultural sectors, landscapes and food systems more climate-smart. This sourcebook is a reference tool for planners, practitioners and policy makers working in agriculture, forestry and fisheries at national and subnational levels." -- Back cover.




Smart Farming Technologies for Sustainable Agricultural Development


Book Description

In order to meet food needs, farmers need to integrate the latest technologies enabling them to make more informed decisions. Smart Farming Technologies for Sustainable Agricultural Development provides innovative insights into the latest farming advancements in terms of informatics and communication. The content within this publication represents the work of topics such as sensor systems, wireless communication, and the integration of the Internet of Things in agriculture-related processes. It is a vital reference source for farmers, academicians, researchers, government agencies, technology developers, and graduate-level students seeking current research on smart farming technologies.




Agriculture 5.0


Book Description

Agriculture 5.0: Artificial Intelligence, IoT & Machine Learning provides an interdisciplinary, integrative overview of latest development in the domain of smart farming. It shows how the traditional farming practices are being enhanced and modified by automation and introduction of modern scalable technological solutions that cut down on risks, enhance sustainability, and deliver predictive decisions to the grower, in order to make agriculture more productive. An elaborative approach has been used to highlight the applicability and adoption of key technologies and techniques such WSN, IoT, AI and ML in agronomic activities ranging from collection of information, analysing and drawing meaningful insights from the information which is more accurate, timely and reliable.It synthesizes interdisciplinary theory, concepts, definitions, models and findings involved in complex global sustainability problem-solving, making it an essential guide and reference. It includes real-world examples and applications making the book accessible to a broader interdisciplinary readership. This book clarifies hoe the birth of smart and intelligent agriculture is being nurtured and driven by the deployment of tiny sensors or AI/ML enabled UAV’s or low powered Internet of Things setups for the sensing, monitoring, collection, processing and storing of the information over the cloud platforms. This book is ideal for researchers, academics, post-graduate students and practitioners of agricultural universities, who want to embrace new agricultural technologies for Determination of site-specific crop requirements, future farming strategies related to controlling of chemical sprays, yield, price assessments with the help of AI/ML driven intelligent decision support systems and use of agri-robots for sowing and harvesting. The book will be covering and exploring the applications and some case studies of each technology, that have heavily made impact as grand successes. The main aim of the book is to give the readers immense insights into the impact and scope of WSN, IoT, AI and ML in the growth of intelligent digital farming and Agriculture revolution 5.0.The book also focuses on feasibility of precision farming and the problems faced during adoption of precision farming techniques, its potential in India and various policy measures taken all over the world. The reader can find a description of different decision support tools like crop simulation models, their types, and application in PA. Features: Detailed description of the latest tools and technologies available for the Agriculture 5.0. Elaborative information for different type of hardware, platforms and machine learning techniques for use in smart farming. Elucidates various types of predictive modeling techniques available for intelligent and accurate agricultural decision making from real time collected information for site specific precision farming. Information about different type of regulations and policies made by all over the world for the motivation farmers and innovators to invest and adopt the AI and ML enabled tools and farming systems for sustainable production.




Farm Profits and Adoption of Precision Agriculture


Book Description

Precision agriculture (PA) and its suite of information technologies-such as soil and yield mapping using a global positioning system (GPS), GPS tractor guidance systems, and variable-rate input application-allow farm operators to fine-tune their production practices. Access to detailed, within-field information can decrease input costs and increase yields. USDA's Agricultural Resource Management Survey shows that these PA technologies were used on roughly 30 to 50 percent of U.S. corn and soybean acres in 2010-12. Previous studies suggest that use of PA is associated with higher profits under certain conditions, but aggregate estimates of these gains have not been available. In this report, a treatment-effects model is developed to estimate factors associated with PA technology adoption rates and the impacts of adoption on profits. Labor and machinery used in production and certain farm characteristics, like farm size, are associated with adoption as well as with two profit measures, net returns and operating profits. The impact of these PA technologies on profits for U.S. corn producers is positive, but small. Keywords: Crop production information technologies, precision agriculture, variablerate technology, soil tests, global positioning system maps, guidance systems.




The Nile Delta


Book Description

This volume presents up-to-date research on the Nile Delta and discusses the challenges involved in and opportunities for improving its productivity. The topics addressed include: groundwater in the Nile Delta and its quality; the mapping of groundwater with remote sensing technologies; land degradation; salt-affected soils; on-farm irrigation; the remediation of agricultural drainage water for sustainable reuse; the use of satellite images to estimate the bathymetry of coastal lakes; the assessment of the Nile Delta coastal zone and its management; its sediment and water quality; and fishing ports, fish and fisheries. The book closes with a review of the latest findings on the Nile Delta and offers conclusions and recommendations for future research to fulfill the requirements for sustainable development. It provides a unique and topical resource for researchers, graduate students and policymakers alike.




Big Data in Context


Book Description

This book is open access under a CC BY 4.0 license. This book sheds new light on a selection of big data scenarios from an interdisciplinary perspective. It features legal, sociological and economic approaches to fundamental big data topics such as privacy, data quality and the ECJ’s Safe Harbor decision on the one hand, and practical applications such as smart cars, wearables and web tracking on the other. Addressing the interests of researchers and practitioners alike, it provides a comprehensive overview of and introduction to the emerging challenges regarding big data.All contributions are based on papers submitted in connection with ABIDA (Assessing Big Data), an interdisciplinary research project exploring the societal aspects of big data and funded by the German Federal Ministry of Education and Research.This volume was produced as a part of the ABIDA project (Assessing Big Data, 01IS15016A-F). ABIDA is a four-year collaborative project funded by the Federal Ministry of Education and Research. However the views and opinions expressed in this book reflect only the authors’ point of view and not necessarily those of all members of the ABIDA project or the Federal Ministry of Education and Research.




Precision Agriculture Technology for Crop Farming


Book Description

This book provides a review of precision agriculture technology development, followed by a presentation of the state-of-the-art and future requirements of precision agriculture technology. It presents different styles of precision agriculture technologies suitable for large scale mechanized farming; highly automated community-based mechanized production; and fully mechanized farming practices commonly seen in emerging economic regions. The book emphasizes the introduction of core technical features of sensing, data processing and interpretation technologies, crop modeling and production control theory, intelligent machinery and field robots for precision agriculture production.




Precision Agriculture: Technology and Economic Perspectives


Book Description

This book presents cases from different countries with a main focus on the perspectives of using precision farming in Europe. Divided into 12 chapters it addresses some of the most recent developments and aspects of precision farming. The intention of this book is to provide an overview of some of the most promising technologies with precision agriculture from an economic point of view. Each chapter has been put together so that it can be read individually should the reader wish to focus on one particular topic. Precision Farming as a farm technology benefits from large-scale advantages due to relatively high investment costs and is primarily adopted on farms with medium to large field areas.