Smart Grid as a Solution for Renewable and Efficient Energy


Book Description

As the need for proficient power resources continues to grow, it is becoming increasingly important to implement new strategies and technologies in energy distribution to meet consumption needs. The employment of smart grid networks assists in the efficient allocation of energy resources. Smart Grid as a Solution for Renewable and Efficient Energy features emergent research and trends in energy consumption and management, as well as communication techniques utilized to monitor power transmission and usage. Emphasizing developments and challenges occurring in the field, this book is a critical resource for researchers and students concerned with signal processing, power demand management, energy storage procedures, and control techniques within smart grid networks.




Smart Grid


Book Description

The creation of a flexible, efficient, digitized, dependable and resilient power grid may well be the best route to increasing energy efficiency & security, as well as boosting the potential of renewable & distributed power sources. This book covers smart grids from A-Z, providing a complete treatment of the topic, covering both policy and technology, explaining the most recent innovations supporting its development, and clarifying how the smart grid can support the integration of renewable energy resources. Among the most important topics included are smart metering, renewable energy storage, plug-in hybrids, flexible demand response, strategies for offsetting intermittency issues, micro-grids for off-grid communities, and specific in-depth coverage of wind and solar power integration. The content draws lessons from an international panel of contributors, whose diverse experiences implementing smart grids will help to provide templates for success. - Provides critical information on the technological, design and policy issues that must be taken into account to ensure that the smart grid is implemented successfully - Demonstrates how smart grids can help utilities adhere to increased renewable portfolio standards - Provides examples of successful microgrid/smart metering projects from around the world that can act as templates for developers, operators and investors embarking upon similar projects




Smart Energy Grid Engineering


Book Description

Smart Energy Grid Engineering provides in-depth detail on the various important engineering challenges of smart energy grid design and operation by focusing on advanced methods and practices for designing different components and their integration within the grid. Governments around the world are investing heavily in smart energy grids to ensure optimum energy use and supply, enable better planning for outage responses and recovery, and facilitate the integration of heterogeneous technologies such as renewable energy systems, electrical vehicle networks, and smart homes around the grid. By looking at case studies and best practices that illustrate how to implement smart energy grid infrastructures and analyze the technical details involved in tackling emerging challenges, this valuable reference considers the important engineering aspects of design and implementation, energy generation, utilization and energy conservation, intelligent control and monitoring data analysis security, and asset integrity. - Includes detailed support to integrate systems for smart grid infrastructures - Features global case studies outlining design components and their integration within the grid - Provides examples and best practices from industry that will assist in the migration to smart grids




Design of Smart Power Grid Renewable Energy Systems


Book Description

The Updated Third Edition Provides a Systems Approach to Sustainable Green Energy Production and Contains Analytical Tools for the Design of Renewable Microgrids The revised third edition of Design of Smart Power Grid Renewable Energy Systems integrates three areas of electrical engineering: power systems, power electronics, and electric energy conversion systems. The book also addresses the fundamental design of wind and photovoltaic (PV) energy microgrids as part of smart-bulk power-grid systems. In order to demystify the complexity of the integrated approach, the author first presents the basic concepts, and then explores a simulation test bed in MATLAB® in order to use these concepts to solve a basic problem in the development of smart grid energy system. Each chapter offers a problem of integration and describes why it is important. Then the mathematical model of the problem is formulated, and the solution steps are outlined. This step is followed by developing a MATLAB® simulation test bed. This important book: Reviews the basic principles underlying power systems Explores topics including: AC/DC rectifiers, DC/AC inverters, DC/DC converters, and pulse width modulation (PWM) methods Describes the fundamental concepts in the design and operation of smart grid power grids Supplementary material includes a solutions manual and PowerPoint presentations for instructors Written for undergraduate and graduate students in electric power systems engineering, researchers, and industry professionals, the revised third edition of Design of Smart Power Grid Renewable Energy Systems is a guide to the fundamental concepts of power grid integration on microgrids of green energy sources.




Optimal Planning of Smart Grid With Renewable Energy Resources


Book Description

Understanding the recent developments in renewable energy is crucial for a range of fields in today’s society. As environmental awareness and the need for a more sustainable future continues to grow, the uses of renewable energy, particularly in areas such as smart grid, must be considered and studied thoroughly to be implemented successfully and move society toward a more sustainable future. Optimal Planning of Smart Grid With Renewable Energy Resources offers a detailed guide to the new problems and opportunities for sustainable growth in engineering by focusing on modeling diverse problems occurring in science and engineering as well as novel effective theoretical methods and robust optimization theories, which can be used to analyze and solve multiple types of problems. Covering topics such as electric drives and energy systems, this publication is ideal for researchers, academicians, industry professionals, engineers, scholars, instructors, and students.




Blockchain-Based Smart Grids


Book Description

Blockchain-Based Smart Grids presents emerging applications of blockchain in electrical system and looks to future developments in the use of blockchain technology in the energy market. Rapid growth of renewable energy resources in power systems and significant developments in the telecommunication systems has resulted in new market designs being employed to cover unpredictable and distributed generation of electricity. This book considers the marriage of blockchain and grid modernization, and discusses the transaction shifts in smart grids, from centralized to peer-to-peer structures. In addition, it addresses the effective application of these structures to speed up processes, resulting in more flexible electricity systems. Aimed at moving towards blockchain-based smart grids with renewable applications, this book is useful to researchers and practitioners in all sectors of smart grids, including renewable energy providers, manufacturers and professionals involved in electricity generation from renewable sources, grid modernization and smart grid applications.




Pathways to a Smarter Power System


Book Description

Pathways to a Smarter Power System studies different concepts within smart grids that are used in both industry and system regulators (e.g. distribution and transmission system operators) and research. This book covers these concepts from multiple perspectives and in multiple contexts, presenting detailed technical information on renewable energy systems, distributed generation and energy storage units, methods to activate the demand side of power systems, market structure needs, and advanced planning concepts and new operational requirements, specifically for power system protection, technological evolvements, and requirements regarding technology in ICT, power electronics and control areas. This book provides energy researchers and engineers with an indispensable guide on how to apply wider perspectives to the different technological and conceptual requirements of a smarter power system. - Includes concepts regarding conceptual and technological needs and investment planning suggestions for smart grid enabling strategies - Contains new electric power system operational concepts required by industry, along with R&D studies addressing new solutions to potential operational problems - Covers pathways to smarter power systems from successful existing examples to expected short, medium and long-term possibilities




Renewable Energy Systems


Book Description

In this new edition of Renewable Energy Systems, globally recognized renewable energy researcher and professor, Henrik Lund, sets forth a straightforward, comprehensive methodology for comparing different energy systems' abilities to integrate fluctuating and intermittent renewable energy sources. The book does this by presenting an energy system analysis methodology. The book provides the results of more than fifteen comprehensive energy system analysis studies, examines the large-scale integration of renewable energy into the present system, and presents concrete design examples derived from a dozen renewable energy systems around the globe. Renewable Energy Systems, Second Edition also undertakes the socio-political realities governing the implementation of renewable energy systems by introducing a theoretical framework approach aimed at understanding how major technological changes, such as renewable energy, can be implemented at both the national and international levels. - Provides an introduction to the technical design of renewable energy systems - Demonstrates how to analyze the feasibility and efficiency of large-scale systems to help implementers avoid costly trial and error - Addresses the socio-political challenge of implementing the shift to renewables - Features a dozen extensive case studies from around the globe that provide real-world templates for new installations




Renewable Energy Integration


Book Description

This book presents different aspects of renewable energy integration, from the latest developments in renewable energy technologies to the currently growing smart grids. The importance of different renewable energy sources is discussed, in order to identify the advantages and challenges for each technology. The rules of connecting the renewable energy sources have also been covered along with practical examples. Since solar and wind energy are the most popular forms of renewable energy sources, this book provides the challenges of integrating these renewable generators along with some innovative solutions. As the complexity of power system operation has been raised due to the renewable energy integration, this book also includes some analysis to investigate the characteristics of power systems in a smarter way. This book is intended for those working in the area of renewable energy integration in distribution networks.




Local Electricity Markets


Book Description

Local Electricity Markets introduces the fundamental characteristics, needs, and constraints shaping the design and implementation of local electricity markets. It addresses current proposed local market models and lessons from their limited practical implementation. The work discusses relevant decision and informatics tools considered important in the implementation of local electricity markets. It also includes a review on management and trading platforms, including commercially available tools. Aspects of local electricity market infrastructure are identified and discussed, including physical and software infrastructure. It discusses the current regulatory frameworks available for local electricity market development internationally. The work concludes with a discussion of barriers and opportunities for local electricity markets in the future. - Delineates key components shaping the design and implementation of local electricity market structure - Provides a coherent view on the enabling infrastructures and technologies that underpin local market expansion - Explores the current regulatory environment for local electricity markets drawn from a global panel of contributors - Exposes future paths toward widespread implementation of local electricity markets using an empirical review of barriers and opportunities - Reviews relevant local electricity market case studies, pilots and demonstrators already deployed and under implementation