Smart Inorganic Polymers


Book Description

Provides complete and undiluted knowledge on making inorganic polymers functional. This comprehensive book reflects the state of the art in the field of inorganic polymers, based on research conducted by a number of internationally leading research groups working in this area. It covers the synthesis aspects of synthetic inorganic polymers and looks at multiple inorganic monomers as building blocks, which exhibit unprecedented electronic, redox, photo-emissive, magnetic, self-healing and catalytic properties. It also looks at the applications of inorganic polymers in areas such as optoelectronics, energy storage, industrial chemistry, and biology. Beginning with an overview of the use of smart inorganic polymers in daily life, Smart Inorganic Polymers: Synthesis, Properties and Emerging Applications in Materials and Life Sciences goes on to study the synthesis, properties, and applications of polymers incorporating different heteroelements such as boron, phosphorus, silicon, germanium, and tin. The book also examines inorganic polymers in flame-retardants, as functional materials, and in biology. An excellent addition to the polymer scientists' and synthetic chemists' toolbox Summarizes the state of the art on how to make and use functional inorganic polymers, from synthesis to applications Edited by the coordinator of a highly funded European community research program (COST action) that focuses specifically on the exploration of inorganic polymers Features contributions from top experts in the field Aimed at academics and industrial researchers in this field, Smart Inorganic Polymers: Synthesis, Properties and Emerging Applications in Materials and Life Sciences will also benefit scientists who want to get a better overview on the state-of-the-art of this rapidly advancing area.







Inorganic and Organometallic Polymers


Book Description

The book covers silicon, phosphorus, sulfur, tin and germanium based inorganic polymers. It also includes chapters on organometallic polymers, transition metal based coordination polymers and geopolymers. The book is ideal for students and career starters in the industry.




Smart Nanohybrids of RAFT Polymers and Inorganic Particles


Book Description

This doctoral thesis explains the synthesis and characterization of novel, smart hybrid nanomaterials. Bastian Ebeling combines in this work synthetic polymers with inorganic nanoparticles from silica or gold. The first chapters offer a comprehensive introduction to basics of polymer science and the applied methodologies. In following chapters, the author describes in detail how he systematically tailored the polymers using reversible addition-fragmentation chain transfer polymerization (RAFT) for combination with inorganic nanoparticles. This work also unravels mechanistic, thermodynamic, and structural aspects of all building blocks and reaction steps. The method described here is simple to perform and opens up pathways to new sets of nanohybrid materials with potential applications as sensors, in energy conversion, or catalysis. Readers will find a unique picture of the step-by step formation of new complex nanomaterials. It offers polymer scientists a systematic guide to the formation and synthesis of a new class of responsive nanomaterials.




Smart Materials: Integrated Design, Engineering Approaches, and Potential Applications


Book Description

Polymer-based smart materials have become attractive in recent years due to the fact that polymers are flexible and provide many advantages compared to inorganic smart materials: they are low cost, they are easy to process, and they exhibit good performance at nano- and microscale levels. This volume focuses on a different class of polymers that are used as smart materials in the areas of biotechnology, medicine, and engineering. The volume aims to answer these questions: How do we distinguish ‘smart materials’? and How do they work? The chapters lay the groundwork for assimilation and exploitation of this technological advancement. Four of the key aspects of the approach that the authors have developed throughout this book are highlighted, namely the multidisciplinary exchange of knowledge, exploration of the relationships between multiple scales and their different behaviors, understanding that material properties are dictated at the smallest scale, and, therefore, the recognition that macroscale behavior can be controlled by nanoscale design.




Silicon-based Inorganic Polymers


Book Description




Smart Polymers and Composites


Book Description

Polymeric compounds are generally blended with inorganic/organic materials to prepare composites to tailor the desired properties for specific requirements. The present book reviews new research in the fields of composite green polymers for environmental applications, polyaniline based composites for wastewater treatment, smart polymeric coating materials, polymer decorated bimetallic nanosorbents for dye removal, fuel cell materials, polymeric membranes, green bio-nanocomposites and polymer based catalysts. Composite Green Polymers, Polyaniline Based Composites, Smart Polymeric Materials, Nanosorbents, Polymeric Membranes, Bio-Nanocomposites, Polymer Based Catalyst, Wastewater Treatment, Dye Removal, Fuel Cell Materials, Dehydrogenation




Optically Induced Nanostructures


Book Description

Nanostructuring of materials is a task at the heart of many modern disciplines in mechanical engineering, as well as optics, electronics, and the life sciences. This book includes an introduction to the relevant nonlinear optical processes associated with very short laser pulses for the generation of structures far below the classical optical diffraction limit of about 200 nanometers as well as coverage of state-of-the-art technical and biomedical applications. These applications include silicon and glass wafer processing, production of nanowires, laser transfection and cell reprogramming, optical cleaning, surface treatments of implants, nanowires, 3D nanoprinting, STED lithography, friction modification, and integrated optics. The book highlights also the use of modern femtosecond laser microscopes and nanoscopes as novel nanoprocessing tools.




Silicon-based Inorganic Polymers


Book Description

Inorganic polymers are large molecules, usually linear or branched chains with atoms other than carbon in their backbone. In this new advanced research book, silicon-based inorganic polymers are treated by J Cypryk (Poland), G. Kickelbick (Austria), X. Coqueret (France), A. Colas (Belgium), J. Koe (Japan), W. Uhlig (Switzerland), and by M. Rehahn and M. Weinmann (Germany). Different aspects of phosphorus-containing macromolecules are described by F.F. Stewart (USA), R. De Jaeger and L. Montagne (France), and by M. Carenza, S. Lora, and M.Gleria (Italy). Tin- and germanium-based polymers are illustrated by M. Okano (Japan), while inorganic dendrimers are presented by A.M. Caminade and J.P. Majoral (France) and by V. Balzani (Italy). Miscellaneous topics covering the flame-retardant and the intumescent behavior of the inorganic macromolecules (S. Bourbigot, France), ionically-conductive inorganic macromolecules (E. Montoneri, Italy) and chiral inorganic polymers (G.A. Carriedo and J.F. Garcia-Alonso, Spain) are also addressed.




Synthetic Inorganic Chemistry


Book Description

Synthetic Inorganic Chemistry: New Perspectives presents summaries of the work of some of the most creative researchers in the field. The book highlights the most novel approaches and burgeoning applications of synthetic inorganic chemistry in development. Topics include non-precious metals in catalysis, smart inorganic polymers, new inorganic therapeutics, new photocatalysts for hydrogen production, and more. As the first volume in the Developments in Inorganic Chemistry series, this work is a valuable resource for students and researchers working in inorganic chemistry and material science. Illustrates the scope and vitality of modern synthetic inorganic chemistry Shows the centrality of inorganic chemistry, addressing a variety of global challenges Serves to define the current, important and expanding roles of synthetic inorganic chemistry in interdisciplinary areas such as materials science, synthetic organic chemistry, homogeneous and heterogeneous catalysis