Smart Pharmaceutical Nanocarriers


Book Description

Drug delivery systems and pharmaceutical nanocarriers that respond to different types of stimuli, such as internal ones, intrinsic for the pathological area (changes in pH, temperature, redox condition, activity of certain enzymes), or external, artificially applied (magnetic field, ultrasound, various irradiations), represent an important and continuously growing area of research. Smart Phramaceutical Nanocarriers overviews the various stimuli used for drug release and delivery by smart pharmaceutical carriers and presents cutting-edge research and the newest data from the leading laboratories in each area.







Organic Materials as Smart Nanocarriers for Drug Delivery


Book Description

Organic Materials as Smart Nanocarriers for Drug Delivery presents the latest developments in the area of organic frameworks used in pharmaceutical nanotechnology. An up-to-date overview of organic smart nanocarriers is explored, along with the different types of nanocarriers, including polymeric micelles, cyclodextrins, hydrogels, lipid nanoparticles and nanoemlusions. Written by a diverse range of international academics, this book is a valuable reference for researchers in biomaterials, the pharmaceutical industry, and those who want to learn more about the current applications of organic smart nanocarriers. Explores the most recent molecular- and structure-based applications of organic smart nanocarriers in drug delivery Highlights different smart nanocarriers and assesses their intricate organic structural properties for improving drug delivery Assesses how molecular organic frameworks lead to more effective drug delivery systems




Smart Nanocarrier for Effective Drug Delivery


Book Description

Introducing Smart Nanocarrier for Effective Drug Delivery—a pioneering guide that delves into the realm of nanotechnology and its revolutionary impact on drug delivery systems. This comprehensive volume offers a deep understanding of smart nanocarriers' principles, design, and applications, setting it apart as a cutting-edge resource in the field. Nanotechnology has transformed drug delivery, enhanced therapeutic outcomes, and minimized side effects. This book provides a concise yet thorough overview of this dynamic landscape, elucidating key concepts and methodologies. It covers foundational principles and explores advanced strategies for targeted drug delivery, personalized medicine, and combination therapy. KEY FEATURES In-depth exploration of various types of nanocarriers, from liposomes to polymeric nanoparticles, highlighting their unique attributes. Detailed examination of smart stimuli-responsive nanocarriers that release drugs at precise locations and times. Comprehensive analysis of the latest advancements in nanomedicine, including nanodiagnostics and theranostics. Case studies illustrating real-world applications and success stories of nanocarrier-enhanced drug delivery. Smart Nanocarrier for Effective Drug Delivery is an invaluable resource for researchers, practitioners, and students in pharmaceutical sciences, nanotechnology, and drug delivery. It offers a roadmap to harnessing the potential of nanocarriers for enhancing therapeutic efficacy while minimizing adverse effects. This book equips readers with the knowledge to navigate the rapidly evolving landscape of smart nanocarrier technology, making it an essential addition to their professional toolkit.




Smart Internal Stimulus-Responsive Nanocarriers for Drug and Gene Delivery


Book Description

The concept of smart drug delivery vehicles involves designing and preparing a nanostructure (or microstructure) that can be loaded with a cargo. This can be a therapeutic drug, a contrast agent for imaging, or a nucleic acid for gene therapy. The nanocarrier serves to protect the cargo from degradation by enzymes in the body, to enhance the solubility of insoluble drugs, to extend the circulation half-life, and to enhance its penetration and accumulation at the target site. Importantly, smart nanocarriers can be designed to be responsive to a specific stimulus, so that the cargo is only released or activated when desired. In this volume we cover smart nanocarriers that respond to internal stimuli that are intrinsic to the target site. These stimuli are specific to the cell type, tissue or organ type, or to the disease state (cancer, infection, inflammation etc). pH-responsive nanostructures can be used for cargo release in acidic endosomal compartments, in the lower pH of tumors, and for specific oral delivery either to the stomach or intestine. Nanocarriers can be designed to be substrates of a wide-range of enzymes that are over-expressed at disease sites. Oxidation and reduction reactions can be taken advantage of in smart nanocarriers by judicious molecular design. Likewise, nanocarriers can be designed to respond to a range of specific biomolecules that may occur at the target site. In this volume we also cover dual and multi-responsive systems that combine stimuli that could be either internal or external.




Inorganic Frameworks as Smart Nanomedicines


Book Description

Inorganic Frameworks as Smart Nanocarriers for Drug Delivery brings together recent research in the area of inorganic frameworks for drug delivery. Different types of nanocarriers are presented and discussed in detail, providing an up-to-date overview on inorganic nanoparticles with pharmaceutical applications. Written by a diverse range of international academics, this book is a valuable reference resource for researchers in biomaterials, the pharmaceutical industry, and those who want to learn more about the current applications of inorganic smart nanocarriers. Includes assembly methods for a variety of smart nanocarrier systems, also showing how they are applied Highlights how metal-oxide nanoparticles are effectively used in drug delivery Assesses the pros and cons of different metallic nanomaterials as drug carriers




Multifunctional Pharmaceutical Nanocarriers


Book Description

The editors have brought together leading experts in multifunctional nanopharmaceuticals to provide cutting edge information; a critical overview of the field; and analysis of current and potential future developments to speed the subject’s rapid development.




Smart External Stimulus-Responsive Nanocarriers for Drug and Gene Delivery


Book Description

The concept of smart drug delivery vehicles involves designing and preparing a nanostructure (or microstructure) that can be loaded with a cargo, this can be a therapeutic drug, a contrast agent for imaging, or a nucleic acid for gene therapy. The nanocarrier serves to protect the cargo from degradation by enzymes in the body, to enhance the solubility of insoluble drugs, to extend the circulation half-life, and to enhance its penetration and accumulation at the target site. Importantly, smart nanocarriers can be designed to be responsive to a specific stimulus, so that the cargo is only released or activated when desired. In this volume we cover smart nanocarriers that respond to externally applied stimuli that usually involve application of physical energy. This physical energy can be applied from outside the body and can either cause cargo release, or can activate the nanostructure to be cytotoxic, or both. The stimuli covered include light of various wavelengths (ultraviolet, visible or infrared), temperature (increased or decreased), magnetic fields (used to externally manipulate nanostructures and to activate them), ultrasound, and electrical and mechanical forces. Finally we discuss the issue of nanotoxicology and the future scope of the field.




Smart Internal Stimulus-Responsive Nanocarriers for Drug and Gene Delivery


Book Description

The concept of smart drug delivery vehicles involves designing and preparing a nanostructure (or microstructure) that can be loaded with a cargo. This can be a therapeutic drug, a contrast agent for imaging, or a nucleic acid for gene therapy. The nanocarrier serves to protect the cargo from degradation by enzymes in the body, to enhance the solubility of insoluble drugs, to extend the circulation half-life, and to enhance its penetration and accumulation at the target site. Importantly, smart nanocarriers can be designed to be responsive to a specific stimulus, so that the cargo is only released or activated when desired. In this volume we cover smart nanocarriers that respond to internal stimuli that are intrinsic to the target site. These stimuli are specific to the cell type, tissue or organ type, or to the disease state (cancer, infection, inflammation etc). pH-responsive nanostructures can be used for cargo release in acidic endosomal compartments, in the lower pH of tumors, and for specific oral delivery either to the stomach or intestine. Nanocarriers can be designed to be substrates of a wide-range of enzymes that are over-expressed at disease sites. Oxidation and reduction reactions can be taken advantage of in smart nanocarriers by judicious molecular design. Likewise, nanocarriers can be designed to respond to a range of specific biomolecules that may occur at the target site. In this volume we also cover dual and multi-responsive systems that combine stimuli that could be either internal or external.




Smart Materials for Drug Delivery


Book Description

Smart Materials for Drug Delivery brings together the recent findings in the area and provides a critical analysis of the different materials available and how they can be applied to advanced drug delivery systems.