Smart Power Grids 2011


Book Description

Electric power systems are experiencing significant changes at the worldwide scale in order to become cleaner, smarter, and more reliable. This edited book examines a wide range of topics related to these changes, which are primarily caused by the introduction of information technologies, renewable energy penetration, digitalized equipment, new operational strategies, and so forth. The emphasis will be put on the modeling and control of smart grid systems. The book addresses research topics such as high efficiency transforrmers, wind turbines and generators, fuel cells, or high speed turbines and generators.




Smart Power Grids 2011


Book Description

Electric power systems are experiencing significant changes at the worldwide scale in order to become cleaner, smarter, and more reliable. This edited book examines a wide range of topics related to these changes, which are primarily caused by the introduction of information technologies, renewable energy penetration, digitalized equipment, new operational strategies, and so forth. The emphasis will be put on the modeling and control of smart grid systems. The book addresses research topics such as high efficiency transforrmers, wind turbines and generators, fuel cells, or high speed turbines and generators.




Smart Power Anniversary Edition


Book Description

Few industries in the U.S. are as stuck in the past as our utilities are. In the face of growing challenges from climate change and the need for energy security, a system and a business model that each took more than a century to evolve must now be extensively retooled in the span of a few decades. Despite the need, many of the technologies and institutions needed are still being designed or tested. It is like rebuilding our entire airplane fleet, along with our runways and air traffic control system, while the planes are all up in the air filled with passengers. In this accessible and insightful book, Peter Fox-Penner considers how utilities interact with customers and how the Smart Grid could revolutionize their relationship. Turning to the supply side, he considers the costs of, and tradeoffs between, large-scale power sources such as coal plants and small-scale power sources close to customers. Finally, he looks at how utilities can respond to all of these challenges and remain viable, while financing hundreds of billions of dollars of investment without much of an increase in sales. Upon publication, Smart Power was praised as an instant classic on the future of energy utilities. This Anniversary Edition includes up-to-date assessments of the industry by such leading energy experts as Daniel Estes and Jim Rogers, as well as a new afterword from the author. Anyone who is interested in our energy future will appreciate the clear explanations and the in-depth analysis it offers.




Design of Smart Power Grid Renewable Energy Systems


Book Description

The Updated Third Edition Provides a Systems Approach to Sustainable Green Energy Production and Contains Analytical Tools for the Design of Renewable Microgrids The revised third edition of Design of Smart Power Grid Renewable Energy Systems integrates three areas of electrical engineering: power systems, power electronics, and electric energy conversion systems. The book also addresses the fundamental design of wind and photovoltaic (PV) energy microgrids as part of smart-bulk power-grid systems. In order to demystify the complexity of the integrated approach, the author first presents the basic concepts, and then explores a simulation test bed in MATLAB® in order to use these concepts to solve a basic problem in the development of smart grid energy system. Each chapter offers a problem of integration and describes why it is important. Then the mathematical model of the problem is formulated, and the solution steps are outlined. This step is followed by developing a MATLAB® simulation test bed. This important book: Reviews the basic principles underlying power systems Explores topics including: AC/DC rectifiers, DC/AC inverters, DC/DC converters, and pulse width modulation (PWM) methods Describes the fundamental concepts in the design and operation of smart grid power grids Supplementary material includes a solutions manual and PowerPoint presentations for instructors Written for undergraduate and graduate students in electric power systems engineering, researchers, and industry professionals, the revised third edition of Design of Smart Power Grid Renewable Energy Systems is a guide to the fundamental concepts of power grid integration on microgrids of green energy sources.




Securing the Smart Grid


Book Description

Securing the Smart Grid discusses the features of the smart grid, particularly its strengths and weaknesses, to better understand threats and attacks, and to prevent insecure deployments of smart grid technologies. A smart grid is a modernized electric grid that uses information and communications technology to be able to process information, such as the behaviors of suppliers and consumers. The book discusses different infrastructures in a smart grid, such as the automatic metering infrastructure (AMI). It also discusses the controls that consumers, device manufacturers, and utility companies can use to minimize the risk associated with the smart grid. It explains the smart grid components in detail so readers can understand how the confidentiality, integrity, and availability of these components can be secured or compromised. This book will be a valuable reference for readers who secure the networks of smart grid deployments, as well as consumers who use smart grid devices. Details how old and new hacking techniques can be used against the grid and how to defend against them Discusses current security initiatives and how they fall short of what is needed Find out how hackers can use the new infrastructure against itself




Design of Smart Power Grid Renewable Energy Systems


Book Description

The Updated Third Edition Provides a Systems Approach to Sustainable Green Energy Production and Contains Analytical Tools for the Design of Renewable Microgrids The revised third edition of Design of Smart Power Grid Renewable Energy Systems integrates three areas of electrical engineering: power systems, power electronics, and electric energy conversion systems. The book also addresses the fundamental design of wind and photovoltaic (PV) energy microgrids as part of smart-bulk power-grid systems. In order to demystify the complexity of the integrated approach, the author first presents the basic concepts, and then explores a simulation test bed in MATLAB® in order to use these concepts to solve a basic problem in the development of smart grid energy system. Each chapter offers a problem of integration and describes why it is important. Then the mathematical model of the problem is formulated, and the solution steps are outlined. This step is followed by developing a MATLAB® simula­tion test bed. This important book: Reviews the basic principles underlying power systems Explores topics including: AC/DC rectifiers, DC/AC inverters, DC/DC converters, and pulse width modulation (PWM) methods Describes the fundamental concepts in the design and operation of smart grid power grids Supplementary material includes a solutions manual and PowerPoint presentations for instructors Written for undergraduate and graduate students in electric power systems engineering, researchers, and industry professionals, the revised third edition of Design of Smart Power Grid Renewable Energy Systems is a guide to the fundamental concepts of power grid integration on microgrids of green energy sources.




Smart Grid


Book Description

The creation of a flexible, efficient, digitized, dependable and resilient power grid may well be the best route to increasing energy efficiency & security, as well as boosting the potential of renewable & distributed power sources. This book covers smart grids from A-Z, providing a complete treatment of the topic, covering both policy and technology, explaining the most recent innovations supporting its development, and clarifying how the smart grid can support the integration of renewable energy resources. Among the most important topics included are smart metering, renewable energy storage, plug-in hybrids, flexible demand response, strategies for offsetting intermittency issues, micro-grids for off-grid communities, and specific in-depth coverage of wind and solar power integration. The content draws lessons from an international panel of contributors, whose diverse experiences implementing smart grids will help to provide templates for success. Provides critical information on the technological, design and policy issues that must be taken into account to ensure that the smart grid is implemented successfully Demonstrates how smart grids can help utilities adhere to increased renewable portfolio standards Provides examples of successful microgrid/smart metering projects from around the world that can act as templates for developers, operators and investors embarking upon similar projects




Economics of Electricity


Book Description

Explains the economics of electricity at each step of the supply chain: production, transportation and distribution, and retail.




Intelligent Systems for Stability Assessment and Control of Smart Power Grids


Book Description

Power systems are evolving towards the Smart Grid paradigm, featured by large-scale integration of renewable energy resources, e.g. wind and solar power, deeper participation of demand side, and enhanced interaction with electric vehicles. While these emerging elements are inherently stochastic in nature, they are creating a challenge to the system’s stability and its control. In this context, conventional analysis tools are becoming less effective, and necessitate the use alternative tools that are able to deal with the high uncertainty and variability in the smart grid. Smart Grid initiatives have facilitated wide-spread deployment of advanced sensing and communication infrastructure, e.g. phasor measurement units at grid level and smart meters at household level, which collect tremendous amount of data in various time and space scales. How to fully utilize the data and extract useful knowledge from them, is of great importance and value to support the advanced stability assessment and control of the smart grid. The intelligent system strategy has been identified as an effective approach to meet the above needs. This book presents the cutting-edge intelligent system techniques and their applications for stability assessment and control of power systems. The major topics covered in this book are: Intelligent system design and algorithms for on-line stability assessment, which aims to use steady-state operating variables to achieve fast stability assessment for credible contingencies. Intelligent system design and algorithms for preventive stability control, which aims at transparent and interpretable decision-making on preventive control actions to manipulate system operating condition against possible contingencies. Intelligent system design and algorithms for real-time stability prediction, which aims to use synchronized measurements to foresee the stability status under an ongoing disturbance. Intelligent system design and algorithms for emergency stability control, which aims at fast decision-making on stability control actions at emergency stage where instability is propagating. Methodologies and algorithms for improving the robustness of intelligent systems against missing-data issues. This book is a reference and guide for researchers, students, and engineers who seek to study and design intelligent systems to resolve stability assessment and control problems in the smart grid age.




Electric Transportation Systems in Smart Power Grids


Book Description

The leading countries around the globe, including Australia, have taken serious steps to decarbonize their energy and transportation sectors as part of their obligations for a suitable future with fewer emissions and a better environment. The decarbonization plans in different countries have resulted in changes such as increases in the penetration level of renewable energy sources and the introduction of electric vehicles as a target for future transportation systems. This is the point where mobility meets electricity and brings new challenges and opportunities, especially in the integration with modern power systems. The main impact would be on the demand-side and the distribution network. These impacts would be also reflected in the operation, control, security, and stability of transmission systems. This creates a new grid architecture characterized by a growing variability and uncertainties. Moreover, the growth in the share of renewable energy in the total energy market is one of the major causes of the increasing fluctuations in the balance between generation and consumption in the whole system. Therefore, the key challenge lies in developing new concepts to ensure the effective integration of distributed energy resources and electric transportation systems, including EVs, into existing and future market structures. Electric Transportation Systems in Smart Power Grids address how these issues—EVs, E-buses, and other smart appliances on the demand side—can be aggregated to form virtual power plants, which are considered an efficient solution to provide operational flexibility to the grid. The book also discusses how EV-based virtual power plants can also provide myriad services for distribution system operators, transmission system operators, and even local prosumers within the energy community. Features: Describes the services required to power systems from EVs and electric transportation sector Covers frequency control in modern power systems using aggregated EVs Discusses the integration and interaction between EVs and Smart grids Introduces electric vehicle aggregation methods for supporting power systems Highlights flexibility provided from electric transportation system to smart energy sector Discusses the high penetration level of renewable energy sources and EVs