Smith-Purcell Effect


Book Description

Proposes that widely used, rigorous numerical-analytical methods of the diffraction theory are effective in solving the problems of surface wave scattering by gratings (including the scattering of eigenwaves of the electron flow). Discussion concerns theoretical studies of the Smith-Purcell Effect (







Library of Congress Subject Headings


Book Description




Diffraction Radiation from Relativistic Particles


Book Description

This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves near a target edge at a distance ( – Lorentz factor, – wave length). Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.




Novel Radiation Sources Using Relativistic Electrons


Book Description

The purpose of this book is to give a description of the state of the art in theoretical and experimental work achieved in radiation source development. It summarizes clearly and comprehensibly, the basic physical aspects needed to understand the phenomena, and also provides the interested reader with sufficient literature to be able to follow the development in more detail. In addition, it contains a unified view of most theoretical effects and their common properties. The most recent developments as well as references to further work can be found in this volume. In many cases, review articles and textbooks published in specialized areas are also incorporated into the text.




Near-Field-Mediated Photon–Electron Interactions


Book Description

This book focuses on the use of novel electron microscopy techniques to further our understanding of the physics behind electron–light interactions. It introduces and discusses the methodologies for advancing the field of electron microscopy towards a better control of electron dynamics with significantly improved temporal resolutions, and explores the burgeoning field of nanooptics – the physics of light–matter interaction at the nanoscale – whose practical applications transcend numerous fields such as energy conversion, control of chemical reactions, optically induced phase transitions, quantum cryptography, and data processing. In addition to describing analytical and numerical techniques for exploring the theoretical basis of electron–light interactions, the book showcases a number of relevant case studies, such as optical modes in gold tapers probed by electron beams and investigations of optical excitations in the topological insulator Bi2Se3. The experiments featured provide an impetus to develop more relevant theoretical models, benchmark current approximations, and even more characterization tools based on coherent electron–light interactions.




Electromagnetic Radiation of Electrons in Periodic Structures


Book Description

Periodic magnetic structures (undulators) are widely used in accelerators to generate monochromatic undulator radiation (UR) in the range from far infrared to the hard X-ray region. Another periodic crystalline structure is used to produce quasimonochromatic polarized photon beams via the coherent bremsstrahlung mechanism (CBS). Due to such characteristics as monochromaticity, polarization and adjustability, these types of radiation is of large interest for applied and basic research of accelerator-emitted radiation. The book provides a detailed overview of the fundamental principles behind electromagnetic radiation emitted from accelerated charged particles (e.g. UR, CBS, radiation of fast electrons in Laser flash fields) as well as a unified description of relatively new radiation mechanisms which attracted great interest in recent years. This are the so-called polarization radiation excited by the Coulomb field of incident particles in periodic structures, parametric X-rays, resonant transition radiation and the Smith-Purcell effect. Characteristics of such radiation sources and perspectives of their usage are discussed. The recent experimental results as well as their interpretation are presented.




Free Electron Lasers


Book Description

Free Electron Lasers consists of 10 chapters, which refer to fundamentals and design of various free electron laser systems, from the infrared to the xuv wavelength regimes. In addition to making a comparison with conventional lasers, a couple of special topics concerning near-field and cavity electrodynamics, compact and table-top arrangements and strong radiation induced exotic states of matter are analyzed as well. The control and diagnostics of such devices and radiation safety issues are also discussed. Free Electron Lasers provides a selection of research results on these special sources of radiation, concerning basic principles, applications and some interesting new ideas of current interest.




Progress in Nano-Electro-Optics I


Book Description

An up-to-date status report presenting the current state-of-the-art in nano-optics, this volume also deals with near-field optical microscopy. Each chapter is written by a leading scientist in the field. It will be useful to all researchers working at the forefront of near-field optics and nanoelectro-optics.




Plasma Science and Technology


Book Description

Plasma science and technology (PST) is a discipline investigating fundamental transport behaviors, interaction physics, and reaction chemistry of plasma and its applications in different technologies and fields. Plasma has uses in refrigeration, biotechnology, health care, microelectronics and semiconductors, nanotechnology, space and environmental sciences, and so on. This book provides a comprehensive overview of PST, including information on different types of plasma, basic interactions of plasma with organic materials, plasma-based energy devices, low-temperature plasma for complex systems, and much more.