Socio-Ecology of Microbes in a Changing Ocean


Book Description

Socio-ecological interactions between microbes and associated organisms are integral elements of marine ecosystem dynamics. This Research Topic combines sixteen papers on interactions across the major domains of marine life, including prokaryotes, phytoplankton, macroalgae, cnidarians, viruses and fungi. These studies offer exciting insights into microbial cooperation and competition, holobiont ecology, interkingdom signaling, chemical microdiversity, and biogeography. Understanding such network processes is essential for the interpretation of ecosystem functioning and biogeochemical events, particularly in the wake of climate change.




Microbial Ecology of the Oceans


Book Description

The newly revised and updated third edition of the bestselling book on microbial ecology in the oceans The third edition of Microbial Ecology of the Oceans features new topics, as well as different approaches to subjects dealt with in previous editions. The book starts out with a general introduction to the changes in the field, as well as looking at the prospects for the coming years. Chapters cover ecology, diversity, and function of microbes, and of microbial genes in the ocean. The biology and ecology of some model organisms, and how we can model the whole of the marine microbes, are dealt with, and some of the trophic roles that have changed in the last years are discussed. Finally, the role of microbes in the oceanic P cycle are presented. Microbial Ecology of the Oceans, Third Edition offers chapters on The Evolution of Microbial Ecology of the Ocean; Marine Microbial Diversity as Seen by High Throughput Sequencing; Ecological Significance of Microbial Trophic Mixing in the Oligotrophic Ocean; Metatranscritomics and Metaproteomics; Advances in Microbial Ecology from Model Marine Bacteria; Marine Microbes and Nonliving Organic Matter; Microbial Ecology and Biogeochemistry of Oxygen-Deficient Water Columns; The Ocean’s Microscale; Ecological Genomics of Marine Viruses; Microbial Physiological Ecology of The Marine Phosphorus Cycle; Phytoplankton Functional Types; and more. A new and updated edition of a key book in aquatic microbial ecology Includes widely used methodological approaches Fully describes the structure of the microbial ecosystem, discussing in particular the sources of carbon for microbial growth Offers theoretical interpretations of subtropical plankton biogeography Microbial Ecology of the Oceans is an ideal text for advanced undergraduates, beginning graduate students, and colleagues from other fields wishing to learn about microbes and the processes they mediate in marine systems.




Microbiome Under Changing Climate


Book Description

Microbiome Under Changing Climate: Implications and Solutions presents the latest biotechnological interventions for the judicious use of microbes to ensure optimal agricultural yield. Summarizing aspects of vulnerability, adaptation and amelioration of climate impact, this book provides an important resource for understanding microbes, plants and soil in pursuit of sustainable agriculture and improved food security. It emphasizes the interaction between climate and soil microbes and their potential role in promoting advanced sustainable agricultural solutions, focusing on current research designed to use beneficial microbes such as plant growth promoting microorganisms, fungi, endophytic microbes, and more. Changes in climatic conditions influence all factors of the agricultural ecosystem, including adversely impacting yield both in terms of quantity and nutritional quality. In order to develop resilience against climatic changes, it is increasingly important to understand the effect on the native micro-flora, including the distribution of methanogens and methanotrophs, nutrient content and microbial biomass, among others. - Demonstrates the impact of climate change on secondary metabolites of plants and potential responses - Incorporates insights on microflora of inhabitant soil - Explores mitigation processes and their modulation by sustainable methods - Highlights the role of microbial technologies in agricultural sustainability




Ocean Acidification


Book Description

The ocean has absorbed a significant portion of all human-made carbon dioxide emissions. This benefits human society by moderating the rate of climate change, but also causes unprecedented changes to ocean chemistry. Carbon dioxide taken up by the ocean decreases the pH of the water and leads to a suite of chemical changes collectively known as ocean acidification. The long term consequences of ocean acidification are not known, but are expected to result in changes to many ecosystems and the services they provide to society. Ocean Acidification: A National Strategy to Meet the Challenges of a Changing Ocean reviews the current state of knowledge, explores gaps in understanding, and identifies several key findings. Like climate change, ocean acidification is a growing global problem that will intensify with continued CO2 emissions and has the potential to change marine ecosystems and affect benefits to society. The federal government has taken positive initial steps by developing a national ocean acidification program, but more information is needed to fully understand and address the threat that ocean acidification may pose to marine ecosystems and the services they provide. In addition, a global observation network of chemical and biological sensors is needed to monitor changes in ocean conditions attributable to acidification.













The Social Biology of Microbial Communities


Book Description

Beginning with the germ theory of disease in the 19th century and extending through most of the 20th century, microbes were believed to live their lives as solitary, unicellular, disease-causing organisms . This perception stemmed from the focus of most investigators on organisms that could be grown in the laboratory as cellular monocultures, often dispersed in liquid, and under ambient conditions of temperature, lighting, and humidity. Most such inquiries were designed to identify microbial pathogens by satisfying Koch's postulates.3 This pathogen-centric approach to the study of microorganisms produced a metaphorical "war" against these microbial invaders waged with antibiotic therapies, while simultaneously obscuring the dynamic relationships that exist among and between host organisms and their associated microorganisms-only a tiny fraction of which act as pathogens. Despite their obvious importance, very little is actually known about the processes and factors that influence the assembly, function, and stability of microbial communities. Gaining this knowledge will require a seismic shift away from the study of individual microbes in isolation to inquiries into the nature of diverse and often complex microbial communities, the forces that shape them, and their relationships with other communities and organisms, including their multicellular hosts. On March 6 and 7, 2012, the Institute of Medicine's (IOM's) Forum on Microbial Threats hosted a public workshop to explore the emerging science of the "social biology" of microbial communities. Workshop presentations and discussions embraced a wide spectrum of topics, experimental systems, and theoretical perspectives representative of the current, multifaceted exploration of the microbial frontier. Participants discussed ecological, evolutionary, and genetic factors contributing to the assembly, function, and stability of microbial communities; how microbial communities adapt and respond to environmental stimuli; theoretical and experimental approaches to advance this nascent field; and potential applications of knowledge gained from the study of microbial communities for the improvement of human, animal, plant, and ecosystem health and toward a deeper understanding of microbial diversity and evolution. The Social Biology of Microbial Communities: Workshop Summary further explains the happenings of the workshop.




New and Future Developments in Microbial Biotechnology and Bioengineering


Book Description

New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Biomolecules: Properties, Relevance and Their Translational Applications presents a concise review on microbial biotechnology, along with impacts and recent results from research centers, small companies and large enterprises. The book brings the most relevant information on how we can use resources - in this case from microorganisms - and technology to develop solutions in fields like biofuels, food, cosmetics and medicine. It covers case studies of start-ups in the field and explains how scientists have moved their ideas into profitable bio-based products that are necessary for our current living standards. In addition, the book describes strategic governmental programs designed to exploit biomass in a sustainable way, along with detailed information on research in several high-impact, worldwide laboratories. It gives concrete examples of ongoing research from molecules to methods, such as L-asparaginase, extremophiles, new diagnostics tools and the analytical methods that have raised the quality of the data obtained, thereby boosting the so-called bioeconomy. - Comprises a unique source of information on the various applications of microbial biomolecules - Provides resourceful material for new ideas and strong rational/application-oriented stories - Discusses biotech companies in various areas (biofuel, food, medicine, etc.) who are actively using microbial biomolecules - Outlines scientific discoveries and their translation into profitable products - Gives an insight perspective of institutional and governmental strategic research programs aiming to preserve, explore and generate benefits from microbial biomolecules




The Responses of Marine Microorganisms, Communities and Ecofunctions to Environmental Gradients


Book Description

Marine environments are fluid. Microorganisms living in the ocean experience diverse environmental changes over wide spatiotemporal scales. For microorganisms and their communities to survive and function in the ocean, they need to have the capacity to sense, respond to, adapt to and/or withstand periodic and sporadic environmental changes. This eBook collates a variety of recent research reports and theoretical discussions on the ecoenergetic strategies, community structure, biogeochemical and ecosystem functions as well as regulatory processes and mechanisms that marine microorganisms employ in response to environmental gradients and variations.