Soft Computing Applications for Renewable Energy and Energy Efficiency


Book Description

As the climate and environment continue to fluctuate, researchers are urgently looking for new ways to preserve our limited resources and prevent further environmental degradation. The answer can be found through computer science, a field that is evolving at precisely the time it is needed most. Soft Computing Applications for Renewable Energy and Energy Efficiency brings together the latest technological research in computational intelligence and fuzzy logic as a way to care for our environment. This reference work highlights current advances and future trends in environmental sustainability using the principles of soft computing, making it an essential resource for students, researchers, engineers, and practitioners in the fields of project engineering and energy science.




Applied Soft Computing and Embedded System Applications in Solar Energy


Book Description

Examines the integration of hardware with stand-alone PV panels and real time monitoring of factors affecting the efficiency of the photovoltaic panels Offers the real time implementation of soft computing and embedded system in the area of solar energy Discusses how soft computing plays a huge role in the prediction of efficiency of stand-alone and grid connected solar PV systems Discusses how embedded system applications with smart monitoring can control and enhance the efficiency of stand-alone and grid connected solar PV systems Explores swarm intelligence techniques for solar PV parameter estimation




Soft Computing in Green and Renewable Energy Systems


Book Description

Soft Computing in Green and Renewable Energy Systems provides a practical introduction to the application of soft computing techniques and hybrid intelligent systems for designing, modeling, characterizing, optimizing, forecasting, and performance prediction of green and renewable energy systems. Research is proceeding at jet speed on renewable energy (energy derived from natural resources such as sunlight, wind, tides, rain, geothermal heat, biomass, hydrogen, etc.) as policy makers, researchers, economists, and world agencies have joined forces in finding alternative sustainable energy solutions to current critical environmental, economic, and social issues. The innovative models, environmentally benign processes, data analytics, etc. employed in renewable energy systems are computationally-intensive, non-linear and complex as well as involve a high degree of uncertainty. Soft computing technologies, such as fuzzy sets and systems, neural science and systems, evolutionary algorithms and genetic programming, and machine learning, are ideal in handling the noise, imprecision, and uncertainty in the data, and yet achieve robust, low-cost solutions. As a result, intelligent and soft computing paradigms are finding increasing applications in the study of renewable energy systems. Researchers, practitioners, undergraduate and graduate students engaged in the study of renewable energy systems will find this book very useful.




The Green Computing Book


Book Description

State-of-the-Art Approaches to Advance the Large-Scale Green Computing Movement Edited by one of the founders and lead investigator of the Green500 list, The Green Computing Book: Tackling Energy Efficiency at Large Scale explores seminal research in large-scale green computing. It begins with low-level, hardware-based approaches and then traverses up the software stack with increasingly higher-level, software-based approaches. In the first chapter, the IBM Blue Gene team illustrates how to improve the energy efficiency of a supercomputer by an order of magnitude without any system performance loss in parallelizable applications. The next few chapters explain how to enhance the energy efficiency of a large-scale computing system via compiler-directed energy optimizations, an adaptive run-time system, and a general prediction performance framework. The book then explores the interactions between energy management and reliability and describes storage system organization that maximizes energy efficiency and reliability. It also addresses the need for coordinated power control across different layers and covers demand response policies in computing centers. The final chapter assesses the impact of servers on data center costs.




Soft Computing in Green and Renewable Energy Systems


Book Description

Soft Computing in Green and Renewable Energy Systems provides a practical introduction to the application of soft computing techniques and hybrid intelligent systems for designing, modeling, characterizing, optimizing, forecasting, and performance prediction of green and renewable energy systems. Research is proceeding at jet speed on renewable energy (energy derived from natural resources such as sunlight, wind, tides, rain, geothermal heat, biomass, hydrogen, etc.) as policy makers, researchers, economists, and world agencies have joined forces in finding alternative sustainable energy solutions to current critical environmental, economic, and social issues. The innovative models, environmentally benign processes, data analytics, etc. employed in renewable energy systems are computationally-intensive, non-linear and complex as well as involve a high degree of uncertainty. Soft computing technologies, such as fuzzy sets and systems, neural science and systems, evolutionary algorithms and genetic programming, and machine learning, are ideal in handling the noise, imprecision, and uncertainty in the data, and yet achieve robust, low-cost solutions. As a result, intelligent and soft computing paradigms are finding increasing applications in the study of renewable energy systems. Researchers, practitioners, undergraduate and graduate students engaged in the study of renewable energy systems will find this book very useful.




Soft Computing Applications


Book Description

Soft computing techniques open significant opportunities in several areas, such as industry, medicine, energy, security, transportation, and education. This book provides theory and applications development using soft computing techniques by organizing intelligent systems for many applications to the benefit of humanity. The book comes from a multidisciplinary subject whose audience can come from different academic departments, e.g., department of computer science and engineering, department of medical imaging, department of biomedical informatics, department of education sciences, and so on where artificial intelligence and soft computing are of routine courses. The book covers a range of audience from academicians, practitioners, researchers, and students to stakeholders. It can support graduate students and interns to develop a deep understanding of the latest paradigms in the soft computing techniques.




Design, Analysis and Applications of Renewable Energy Systems


Book Description

Design, Analysis and Applications of Renewable Energy Systems covers recent advancements in the study of renewable energy control systems by bringing together diverse scientific breakthroughs on the modeling, control and optimization of renewable energy systems as conveyed by leading energy systems engineering researchers. The book focuses on present novel solutions for many problems in the field, covering modeling, control theorems and the optimization techniques that will help solve many scientific issues for researchers. Multidisciplinary applications are also discussed, along with their fundamentals, modeling, analysis, design, realization and experimental results. This book fills the gaps between different interdisciplinary applications, ranging from mathematical concepts, modeling, and analysis, up to the realization and experimental work. - Presents some of the latest innovative approaches to renewable energy systems from the point-of-view of dynamic modeling, system analysis, optimization, control and circuit design - Focuses on advances related to optimization techniques for renewable energy and forecasting using machine learning methods - Includes new circuits and systems, helping researchers solve many nonlinear problems




Renewable and Alternative Energy: Concepts, Methodologies, Tools, and Applications


Book Description

As the human population expands and natural resources become depleted, it becomes necessary to explore other sources for energy consumption and usage. Renewable and Alternative Energy: Concepts, Methodologies, Tools, and Applications provides a comprehensive overview of emerging perspectives and innovations for alternative energy sources. Highlighting relevant concepts on energy efficiency, current technologies, and ongoing industry trends, this is an ideal reference source for academics, practitioners, professionals, and upper-level students interested in the latest research on renewable energy.




Advances in Energy System Optimization


Book Description

The papers presented in this volume address diverse challenges in energy systems, ranging from operational to investment planning problems, from market economics to technical and environmental considerations, from distribution grids to transmission grids and from theoretical considerations to data provision concerns and applied case studies. The International Symposium on Energy System Optimization (ISESO) was held on November 9th and 10th 2015 at the Heidelberg Institute for Theoretical Studies (HITS) and was organized by HITS, Heidelberg University and Karlsruhe Institute of Technology.




Soft Computing in Renewable Energy Technologies


Book Description

This book addresses and disseminates state-of-the-art research and development in the applications of soft computing techniques for renewable energy systems. It covers topics such as solar energy, wind energy, and solar concentrator technologies, as well as building systems and power generation systems. In all these areas, applications of soft computing methods such as artificial neural networks, genetic algorithms, particle swarm optimization, cuckoo search, fuzzy logic, and a combination of these, called hybrid systems, are included. This book is a source for students interested in the fields of renewable energy and the application of the soft computing. In addition, our book can be considered as a reference for researchers and academics since it will include applications of soft computing in different renewable energy systems.