Soft Computing in Systems and Control Technology


Book Description

Soft computing is a branch of computing which, unlike hard computing, can deal with uncertain, imprecise and inexact data. The three constituents of soft computing are fuzzy-logic-based computing, neurocomputing, and genetic algorithms. Fuzzy logic contributes the capability of approximate reasoning, neurocomputing offers function approximation and learning capabilities, and genetic algorithms provide a methodology for systematic random search and optimization. These three capabilities are combined in a complementary and synergetic fashion.This book presents a cohesive set of contributions dealing with important issues and applications of soft computing in systems and control technology. The contributions include state-of-the-art material, mathematical developments, fresh results, and how-to-do issues. Among the problems studied via neural, fuzzy, neurofuzzy and genetic methodologies are: data fusion, reinforcement learning, approximation properties, multichannel imaging, signal processing, system optimization, gaming, and several forms of control.The book can serve as a reference for researchers and practitioners in the field. Readers can find in it a large amount of useful and timely information, and thus save considerable effort in searching for other scattered literature.




New Soft Computing Techniques for System Modeling, Pattern Classification and Image Processing


Book Description

Science has made great progress in the twentieth century, with the establishment of proper disciplines in the fields of physics, computer science, molecular biology, and many others. At the same time, there have also emerged many engineering ideas that are interdisciplinary in nature, beyond the realm of such orthodox disciplines. These in clude, for example, artificial intelligence, fuzzy logic, artificial neural networks, evolutional computation, data mining, and so on. In or der to generate new technology that is truly human-friendly in the twenty-first century, integration of various methods beyond specific disciplines is required. Soft computing is a key concept for the creation of such human friendly technology in our modern information society. Professor Rutkowski is a pioneer in this field, having devoted himself for many years to publishing a large variety of original work. The present vol ume, based mostly on his own work, is a milestone in the devel opment of soft computing, integrating various disciplines from the fields of information science and engineering. The book consists of three parts, the first of which is devoted to probabilistic neural net works. Neural excitation is stochastic, so it is natural to investi gate the Bayesian properties of connectionist structures developed by Professor Rutkowski. This new approach has proven to be par ticularly useful for handling regression and classification problems vi Preface in time-varying environments. Throughout this book, major themes are selected from theoretical subjects that are tightly connected with challenging applications.




Learning and Soft Computing


Book Description

This textbook provides a thorough introduction to the field of learning from experimental data and soft computing. Support vector machines (SVM) and neural networks (NN) are the mathematical structures, or models, that underlie learning, while fuzzy logic systems (FLS) enable us to embed structured human knowledge into workable algorithms. The book assumes that it is not only useful, but necessary, to treat SVM, NN, and FLS as parts of a connected whole. Throughout, the theory and algorithms are illustrated by practical examples, as well as by problem sets and simulated experiments. This approach enables the reader to develop SVM, NN, and FLS in addition to understanding them. The book also presents three case studies: on NN-based control, financial time series analysis, and computer graphics. A solutions manual and all of the MATLAB programs needed for the simulated experiments are available.




Soft Computing and Intelligent Systems Design


Book Description

Traditional artificial intelligence (AI) techniques are based around mathematical techniques of symbolic logic, with programming in languages such as Prolog and LISP invented in the 1960s. These are referred to as "crisp" techniques by the soft computing community. The new wave of AI methods seeks inspiration from the world of biology, and is being used to create numerous real-world intelligent systems with the aid of soft computing tools. These new methods are being increasingly taught at the upper end of the curriculum, sometimes as an adjunct to traditional AI courses, and sometimes as a replacement for them. Where a more radical approach is taken and the course is being taught at an introductory level, we have recently published Negnevitsky's book. Karray and Silva will be suitable for the majority of courses which will be found at an advanced level. Karray and de Silva cover the problem of control and intelligent systems design using soft-computing techniques in an integrated manner. They present both theory and applications, including industrial applications, and the book contains numerous worked examples, problems and case studies. Covering the state-of-the-art in soft-computing techniques, the book gives the reader sufficient knowledge to tackle a wide range of complex systems for which traditional techniques are inadequate.




Fuzzy Logic And Soft Computing


Book Description

Soft computing is a new, emerging discipline rooted in a group of technologies that aim to exploit the tolerance for imprecision and uncertainty in achieving solutions to complex problems. The principal components of soft computing are fuzzy logic, neurocomputing, genetic algorithms and probabilistic reasoning.This volume is a collection of up-to-date articles giving a snapshot of the current state of the field. It covers the whole expanse, from theoretical foundations to applications. The contributors are among the world leaders in the field.




Soft Computing


Book Description

Soft computing encompasses various computational methodologies, which, unlike conventional algorithms, are tolerant of imprecision, uncertainty, and partial truth. Soft computing technologies offer adaptability as a characteristic feature and thus permit the tracking of a problem through a changing environment. Besides some recent developments in areas like rough sets and probabilistic networks, fuzzy logic, evolutionary algorithms, and artificial neural networks are core ingredients of soft computing, which are all bio-inspired and can easily be combined synergetically. This book presents a well-balanced integration of fuzzy logic, evolutionary computing, and neural information processing. The three constituents are introduced to the reader systematically and brought together in differentiated combinations step by step. The text was developed from courses given by the authors and offers numerous illustrations as




Advances in Soft Computing


Book Description

Advances in Soft Computing contains the most recent developments in the field of soft computing in engineering design and manufacture. The book comprises a selection of papers that were first presented in June 1998 at the 3rd On-line World Conference on Soft Computing in Engineering Design and Manufacturing. Amongst these are four invited papers by World-renowned researchers in the field. Soft computing is a collection of methodologies which aim to exploit tolerance for imprecision, uncertainty and partial truth to achieve tractability, robustness and low solution cost. The area of applications of soft computing is extensive. Principally the constituents of soft computing are: fuzzy computing, neuro-computing, genetic computing and probabilistic computing. The topics in this book are well focused on engineering design an d manufacturing. This broad collection of 43 research papers, has been arranged into nine parts by the editors. These include: Design Support Systems, Intelligent Control, Data Mining and New Topics in EA basics. The papers on evolutionary design and optimisation are of particular interest. Innovative techniques are explored and the reader is introduced to new, highly advanced research results. The editors present a unique collection of papers that provide a comprehensive overview of current developments in soft computing research around the world.




Intelligent Control Systems Using Soft Computing Methodologies


Book Description

In recent years, intelligent control has emerged as one of the most active and fruitful areas of research and development. Until now, however, there has been no comprehensive text that explores the subject with focus on the design and analysis of biological and industrial applications. Intelligent Control Systems Using Soft Computing Methodologies does all that and more. Beginning with an overview of intelligent control methodologies, the contributors present the fundamentals of neural networks, supervised and unsupervised learning, and recurrent networks. They address various implementation issues, then explore design and verification of neural networks for a variety of applications, including medicine, biology, digital signal processing, object recognition, computer networking, desalination technology, and oil refinery and chemical processes. The focus then shifts to fuzzy logic, with a review of the fundamental and theoretical aspects, discussion of implementation issues, and examples of applications, including control of autonomous underwater vehicles, navigation of space vehicles, image processing, robotics, and energy management systems. The book concludes with the integration of genetic algorithms into the paradigm of soft computing methodologies, including several more industrial examples, implementation issues, and open problems and open problems related to intelligent control technology. Suitable as a textbook or a reference, Intelligent Control Systems explores recent advances in the field from both the theoretical and the practical viewpoints. It also integrates intelligent control design methodologies to give designers a set of flexible, robust controllers and provide students with a tool for solving the examples and exercises within the book.




Neuro-fuzzy and Soft Computing


Book Description

Neuro-Fuzzy and Soft Computing provides the first comprehensive treatment of the constituent methodologies underlying neuro-fuzzy and soft computing, an evolving branch of computational intelligence. The constituent methodologies include fuzzy set theory, neural networks, data clustering techniques, and several stochastic optimization methods that do not require gradient information. In particular, the authors put equal emphasis on theoretical aspects of covered methodologies, as well as empirical observations and verifications of various applications in practice. The book is well suited for use as a text for courses on computational intelligence and as a single reference source for this emerging field. To help readers understand the material the presentation includes more than 50 examples, more than 150 exercises, over 300 illustrations, and more than 150 Matlab scripts. In addition, Matlab is utilized to visualize the processes of fuzzy reasoning, neural-network learning, neuro-fuzzy integration and training, and gradient-free optimization (such as genetic algorithms, simulated annealing, random search, and downhill Simplex method). The presentation also makes use of SIMULINK for neuro-fuzzy control system simulations. All Matlab scripts used in the book are available on the free companion software disk that may be ordered by using the enclosed reply card. The book also contains an "Internet Resource Page" to point the reader to on-line neuro-fuzzy and soft computing home pages, publications, public-domain software, research institutes, news groups, etc. All the HTTP and FTP addresses are available as a bookmark file on the companion software disk.




Soft Computing And Its Applications


Book Description

The concept of soft computing is still in its initial stages of crystallization. Presently available books on soft computing are merely collections of chapters or articles about different aspects of the field. This book is the first to provide a systematic account of the major concepts and methodologies of soft computing, presenting a unified framework that makes the subject more accessible to students and practitioners. Particularly worthy of note is the inclusion of a wealth of information about neuro-fuzzy, neuro-genetic, fuzzy-genetic and neuro-fuzzy-genetic systems, with many illuminating applications and examples.