Software Engineering for Internet Applications


Book Description

After completing this self-contained course on server-based Internet applications software that grew out of an MIT course, students who start with only the knowledge of how to write and debug a computer program will have learned how to build sophisticated Web-based applications.







Computer, Network, Software, and Hardware Engineering with Applications


Book Description

There are many books on computers, networks, and software engineering but none that integrate the three with applications. Integration is important because, increasingly, software dominates the performance, reliability, maintainability, and availability of complex computer and systems. Books on software engineering typically portray software as if it exists in a vacuum with no relationship to the wider system. This is wrong because a system is more than software. It is comprised of people, organizations, processes, hardware, and software. All of these components must be considered in an integrative fashion when designing systems. On the other hand, books on computers and networks do not demonstrate a deep understanding of the intricacies of developing software. In this book you will learn, for example, how to quantitatively analyze the performance, reliability, maintainability, and availability of computers, networks, and software in relation to the total system. Furthermore, you will learn how to evaluate and mitigate the risk of deploying integrated systems. You will learn how to apply many models dealing with the optimization of systems. Numerous quantitative examples are provided to help you understand and interpret model results. This book can be used as a first year graduate course in computer, network, and software engineering; as an on-the-job reference for computer, network, and software engineers; and as a reference for these disciplines.




Advances in Machine Learning Applications in Software Engineering


Book Description

"This book provides analysis, characterization and refinement of software engineering data in terms of machine learning methods. It depicts applications of several machine learning approaches in software systems development and deployment, and the use of machine learning methods to establish predictive models for software quality while offering readers suggestions by proposing future work in this emerging research field"--Provided by publisher.




Software Engineering for Embedded Systems


Book Description

This Expert Guide gives you the techniques and technologies in software engineering to optimally design and implement your embedded system. Written by experts with a solutions focus, this encyclopedic reference gives you an indispensable aid to tackling the day-to-day problems when using software engineering methods to develop your embedded systems. With this book you will learn: The principles of good architecture for an embedded system Design practices to help make your embedded project successful Details on principles that are often a part of embedded systems, including digital signal processing, safety-critical principles, and development processes Techniques for setting up a performance engineering strategy for your embedded system software How to develop user interfaces for embedded systems Strategies for testing and deploying your embedded system, and ensuring quality development processes Practical techniques for optimizing embedded software for performance, memory, and power Advanced guidelines for developing multicore software for embedded systems How to develop embedded software for networking, storage, and automotive segments How to manage the embedded development process Includes contributions from: Frank Schirrmeister, Shelly Gretlein, Bruce Douglass, Erich Styger, Gary Stringham, Jean Labrosse, Jim Trudeau, Mike Brogioli, Mark Pitchford, Catalin Dan Udma, Markus Levy, Pete Wilson, Whit Waldo, Inga Harris, Xinxin Yang, Srinivasa Addepalli, Andrew McKay, Mark Kraeling and Robert Oshana. Road map of key problems/issues and references to their solution in the text Review of core methods in the context of how to apply them Examples demonstrating timeless implementation details Short and to- the- point case studies show how key ideas can be implemented, the rationale for choices made, and design guidelines and trade-offs




Software Engineering Processes


Book Description

Software engineering is playing an increasingly significant role in computing and informatics, necessitated by the complexities inherent in large-scale software development. To deal with these difficulties, the conventional life-cycle approaches to software engineering are now giving way to the "process system" approach, encompassing development methods, infrastructure, organization, and management. Until now, however, no book fully addressed process-based software engineering or set forth a fundamental theory and framework of software engineering processes. Software Engineering Processes: Principles and Applications does just that. Within a unified framework, this book presents a comparative analysis of current process models and formally describes their algorithms. It systematically enables comparison between current models, avoidance of ambiguity in application, and simplification of manipulation for practitioners. The authors address a broad range of topics within process-based software engineering and the fundamental theories and philosophies behind them. They develop a software engineering process reference model (SEPRM) to show how to solve the problems of different process domains, orientations, structures, taxonomies, and methods. They derive a set of process benchmarks-based on a series of international surveys-that support validation of the SEPRM model. Based on their SEPRM model and the unified process theory, they demonstrate that current process models can be integrated and their assessment results can be transformed between each other. Software development is no longer just a black art or laboratory activity. It is an industrialized process that requires the skills not just of programmers, but of organization and project managers and quality assurance specialists. Software Engineering Processes: Principles and Applications is the key to understanding, using, and improving upon effective engineering procedures for software development.




Machine Learning Applications In Software Engineering


Book Description

Machine learning deals with the issue of how to build computer programs that improve their performance at some tasks through experience. Machine learning algorithms have proven to be of great practical value in a variety of application domains. Not surprisingly, the field of software engineering turns out to be a fertile ground where many software development and maintenance tasks could be formulated as learning problems and approached in terms of learning algorithms. This book deals with the subject of machine learning applications in software engineering. It provides an overview of machine learning, summarizes the state-of-the-practice in this niche area, gives a classification of the existing work, and offers some application guidelines. Also included in the book is a collection of previously published papers in this research area.




Systems and Software Engineering with Applications


Book Description

By way of this book, Norman Schneidewind has officially bridged the gap between the two disparate fields. Filled with many real-world examples drawn from industry and government, Systems and Software Engineering with Applications provides a new perspective for systems and software engineers to consider when developing optimal solutions. This unique approach to looking at the big picture when addressing system and software reliability can benefit students, practitioners, and researchers. Excel spreadsheets noted in the book are available on CD-Rom for an interactive learning experience. Read Systems and Software Engineering with Applications and learn how to: Quantitatively analyze the performance, reliability, maintainability, and availability of software in relation to the total system - Understand the availability of software in relation to the total system - Use standards as part of the solution - Evaluate and mitigate the risk of deploying software-based systems - Apply models dealing with the optimization of systems through quantitative examples provided to help you understand and interpret model results Some of the areas the book focuses on include: - Systems and software models, methods, tools, and standards - Quantitative methods to ensure reliability - Software reliability and metrics tools - Integrating testing with reliability - Cyber security prediction models - Ergonomics and safety in the workplace - Scheduling and cost control in systems and software.




Statistical Software Engineering


Book Description

This book identifies challenges and opportunities in the development and implementation of software that contain significant statistical content. While emphasizing the relevance of using rigorous statistical and probabilistic techniques in software engineering contexts, it presents opportunities for further research in the statistical sciences and their applications to software engineering. It is intended to motivate and attract new researchers from statistics and the mathematical sciences to attack relevant and pressing problems in the software engineering setting. It describes the "big picture," as this approach provides the context in which statistical methods must be developed. The book's survey nature is directed at the mathematical sciences audience, but software engineers should also find the statistical emphasis refreshing and stimulating. It is hoped that the book will have the effect of seeding the field of statistical software engineering by its indication of opportunities where statistical thinking can help to increase understanding, productivity, and quality of software and software production.




Computer Systems and Software Engineering: Concepts, Methodologies, Tools, and Applications


Book Description

Professionals in the interdisciplinary field of computer science focus on the design, operation, and maintenance of computational systems and software. Methodologies and tools of engineering are utilized alongside computer applications to develop efficient and precise information databases. Computer Systems and Software Engineering: Concepts, Methodologies, Tools, and Applications is a comprehensive reference source for the latest scholarly material on trends, techniques, and uses of various technology applications and examines the benefits and challenges of these computational developments. Highlighting a range of pertinent topics such as utility computing, computer security, and information systems applications, this multi-volume book is ideally designed for academicians, researchers, students, web designers, software developers, and practitioners interested in computer systems and software engineering.