Extreme Hydrology and Climate Variability


Book Description

Extreme Hydrology and Climate Variability: Monitoring, Modelling, Adaptation and Mitigation is a compilation of contributions by experts from around the world who discuss extreme hydrology topics, from monitoring, to modeling and management. With extreme climatic and hydrologic events becoming so frequent, this book is a critical source, adding knowledge to the science of extreme hydrology. Topics covered include hydrometeorology monitoring, climate variability and trends, hydrological variability and trends, landscape dynamics, droughts, flood processes, and extreme events management, adaptation and mitigation. Each of the book's chapters provide background and theoretical foundations followed by approaches used and results of the applied studies. This book will be highly used by water resource managers and extreme event researchers who are interested in understanding the processes and teleconnectivity of large-scale climate dynamics and extreme events, predictability, simulation and intervention measures. - Presents datasets used and methods followed to support the findings included, allowing readers to follow these steps in their own research - Provides variable methodological approaches, thus giving the reader multiple hydrological modeling information to use in their work - Includes a variety of case studies, thus making the context of the book relatable to everyday working situations for those studying extreme hydrology - Discusses extreme event management, including adaption and mitigation




Soil Hydrology in a Changing Climate


Book Description

A changing climate is causing challenges for soil and water management in many parts of the world. Current soil management practices need to be redesigned to effectively address present and future fluctuating climates. Soil Hydrology in a Changing Climate explores how soil management practices impact soil hydrological characteristics, and how we can improve our understanding of soil and water management under changing conditions. Soil hydrology includes water infiltration and soil water storage, which are critical for agricultural plant and animal production. With our future climate predicted to include hotter, drier conditions, increases in evapotranspiration as well as fewer, more intense storms, improved soil management and soil hydrology are critical to ensuring our agriculture production can meet human demand. This comprehensive book is a valuable resource for land managers, soil conservationists, researchers and others who wish to understand how different management practices affect soil and water dynamics and how these practices can be adjusted to enhance agricultural sustainability and environmental quality.




Landscape Dynamics, Soils and Hydrological Processes in Varied Climates


Book Description

The book presents the processes governing the dynamics of landscapes, soils and sediments, water and energy under different climatic regions using studies conducted in varied climatic zones including arid, semi-arid, humid and wet regions. The spatiotemporal availability of the processes and fluxes and their linkage to the environment, land, soil and water management are presented at various scales. Spatial scales including laboratory, field, watershed, river basin and regions are represented. The effect of tillage operations and land management on soil physical characteristics and soil moisture is discussed. The book has 35 chapters in seven sections: 1) Landscape and Land Cover Dynamics, 2) Rainfall-Runoff Processes, 3) Floods and Hydrological Processes 4) Groundwater Flow and Aquifer Management, 5) Sediment Dynamics and Soil Management, 6) Climate change impact on vegetation, sediment and water dynamics, and 7) Water and Watershed Management.




Soil Hydrology in a Changing Climate


Book Description

A changing climate is causing challenges for soil and water management in many parts of the world. Current soil management practices need to be redesigned to effectively address present and future fluctuating climates. Soil Hydrology in a Changing Climate explores how soil management practices impact soil hydrological characteristics, and how we can improve our understanding of soil and water management under changing conditions. Soil hydrology includes water infiltration and soil water storage, which are critical for agricultural plant and animal production. With our future climate predicted to include hotter, drier conditions, increases in evapotranspiration as well as fewer, more intense storms, improved soil management and soil hydrology are critical to ensuring our agriculture production can meet human demand. This comprehensive book is a valuable resource for land managers, soil conservationists, researchers and others who wish to understand how different management practices affect soil and water dynamics and how these practices can be adjusted to enhance agricultural sustainability and environmental quality.




Soil Hydrology, Land Use and Agriculture


Book Description

Agriculture is strongly affected by changes in soil hydrology as well as changes in land use and management practices and the complex interactions between them. This book develops an understanding of these interactions on a watershed scale, using soil hydrology models and addresses the consequences of land use and management changes on agriculture from a research perspective. Case studies illustrate the impact of land use and management on various soil hydrological parameters under different climates and ecosystems.




Managing Protected Areas in Central and Eastern Europe Under Climate Change


Book Description

Beginning with an overview of data and concepts developed in the EU-project HABIT-CHANGE, this book addresses the need for sharing knowledge and experience in the field of biodiversity conservation and climate change. There is an urgent need to build capacity in protected areas to monitor, assess, manage and report the effects of climate change and their interaction with other pressures. The contributors identify barriers to the adaptation of conservation management, such as the mismatch between planning reality and the decision context at site level. Short and vivid descriptions of case studies, drawn from investigation areas all over Central and Eastern Europe, illustrate both the local impacts of climate change and their consequences for future management. These focus on ecosystems most vulnerable to changes in climatic conditions, including alpine areas, wetlands, forests, lowland grasslands and coastal areas. The case studies demonstrate the application of adaptation strategies in protected areas like National Parks, Biosphere Reserves and Natural Parks, and reflect the potential benefits as well as existing obstacles. A general section provides the necessary background information on climate trends and their effects on abiotic and biotic components. Often, the parties to policy change and conservation management, including managers, land users and stakeholders, lack both expertise and incentives to undertake adaptation activities. The authors recognise that achieving the needed changes in behavior – habit – is as much a social learning process as a matter of science-based procedure. They describe the implementation of modeling, impact assessment and monitoring of climate conditions, and show how the results can support efforts to increase stakeholder involvement in local adaptation strategies. The book concludes by pointing out the need for more work to communicate the cross-sectoral nature of biodiversity protection, the value of well-informed planning in the long-term process of adaptation, the definition of acceptable change, and the motivational value of exchanging experience and examples of good practice.







Forest and Rangeland Soils of the United States Under Changing Conditions


Book Description

This open access book synthesizes leading-edge science and management information about forest and rangeland soils of the United States. It offers ways to better understand changing conditions and their impacts on soils, and explores directions that positively affect the future of forest and rangeland soil health. This book outlines soil processes and identifies the research needed to manage forest and rangeland soils in the United States. Chapters give an overview of the state of forest and rangeland soils research in the Nation, including multi-decadal programs (chapter 1), then summarizes various human-caused and natural impacts and their effects on soil carbon, hydrology, biogeochemistry, and biological diversity (chapters 2–5). Other chapters look at the effects of changing conditions on forest soils in wetland and urban settings (chapters 6–7). Impacts include: climate change, severe wildfires, invasive species, pests and diseases, pollution, and land use change. Chapter 8 considers approaches to maintaining or regaining forest and rangeland soil health in the face of these varied impacts. Mapping, monitoring, and data sharing are discussed in chapter 9 as ways to leverage scientific and human resources to address soil health at scales from the landscape to the individual parcel (monitoring networks, data sharing Web sites, and educational soils-centered programs are tabulated in appendix B). Chapter 10 highlights opportunities for deepening our understanding of soils and for sustaining long-term ecosystem health and appendix C summarizes research needs. Nine regional summaries (appendix A) offer a more detailed look at forest and rangeland soils in the United States and its Affiliates.




Urbanization under a Changing Climate


Book Description

In response to the increasing urbanization, advances in the science of urban hydrology have improved urban water system management, creating more livable cities in which public safety and health, as well as the environment, are protected. The ultimate goal of urban water management is to mimic the hydrological cycle prior to urbanization. On top of urbanization, climate change, which has been demonstrated to alter the hydrological cycle in all respects, has introduced additional challenges to managing urban water systems. To mitigate and adapt to urbanization under a changing climate, understanding key hydrologic components should expand to include complex issues brought forth by climate change. Thus, effective and efficient measures can be formulated. This Special Issue of Water presents a variety of research papers that span a range of spatial and temporal scales of relevance in different societies’ efforts in adapting to the eminent changes in climate and the continuous changes in the landscape. From mitigating water quality in permeable pavements and bioretention swales to understanding changes in groundwater recharge in large regions, this Special Issue examines the state-of-the-art in sustainable urban design for adaptation and resiliency.




Climate Change and Groundwater


Book Description

There is a general consensus that for the next few decades at least, the Earth will continue its warming. This will inevitably bring about serious environmental problems. For human society, the most severe will be those related to alterations of the hydrological cycle, which is already heavily influenced by human activities. Climate change will directly affect groundwater recharge, groundwater quality and the freshwater-seawater interface. The variations of groundwater storage inevitably entail a variety of geomorphological and engineering effects. In the areas where water resources are likely to diminish, groundwater will be one of the main solutions to prevent drought. In spite of its paramount importance, the issue of 'Climate Change and Groundwater' has been neglected. This volume presents some of the current understanding of the topic.