Geotechnical Engineering - Applied Soil Mechanics and Foundation Engineering - Volume 1


Book Description

Soils are the most common and complex type of construction material. Virtually all structures are either built with soil (e.g., earth dams and embankments), in soil (e.g., tunnels and underground storage facilities), or on soil (e.g., building foundations and roads). Soil conditions and load combinations are unique to each site. To be able to predict soil behavior under the anticipated loading conditions, the mechanics of soils should be well understood, and their specific properties evaluated. The project design should also take into consideration the environmental, social, and economic factors. The five-volume book series delivers a comprehensive coverage of topics in geotechnical engineering practice. The unique design of the text allows the user to look up a topic of interest and be able to find, in most cases, the related information all on the same sheet with related figures and tables, eliminating the need for figure and table referral numbers. In a way, each page is a capsule of information on its own, yet, related to the subject covered in that chapter. The topics covered in all five volumes will assist the reader with becoming a licensed professional engineer (PE) and a licensed geotechnical engineer (GE). Volume 1 contains chapters 1 through 7, which provides the user with a practical guide on the fundamentals of soil mechanics, including: Natural Soil Deposits, Soil Composition and Properties, Soil Improvement, Soil Water, Soil Stresses, Soil Compressibility and Settlement, and Shear Strength of Soil. Example problems follow the topic they cover. Several practice problems are included at the end of each chapter with the answers provided. It also contains the necessary forms, tables, and graphing papers for the state-of-the-practice laboratory experiments in soil mechanics.




Soil Mechanics Vol.1


Book Description

This excellent handbook combines four technical manuals covering Site Investigations, Laboratory Testing of Soils and basic Soils Engineering applicable to the Planning, Design and Construction of Pile Foundations and other major Civil Structures. Our manual reviews the various methods of conducting site investigations and laboratory and field testing, preliminary to project design. Covering the basics of soils identification procedures and goes on to settlement behavior, seepage, slope stability and other important subjects. Detailing some more difficult technical subjects including seismic activity and vibrations to some of the modern solutions for soils stabilization such as vibro-flotation and cement or chemical grouting methods.




An Introduction to Soil Mechanics


Book Description

This textbook offers a superb introduction to theoretical and practical soil mechanics. Special attention is given to the risks of failure in civil engineering, and themes covered include stresses in soils, groundwater flow, consolidation, testing of soils, and stability of slopes. Readers will learn the major principles and methods of soil mechanics, and the most important methods of determining soil parameters both in the laboratory and in situ. The basic principles of applied mechanics, that are frequently used, are offered in the appendices. The author’s considerable experience of teaching soil mechanics is evident in the many features of the book: it is packed with supportive color illustrations, helpful examples and references. Exercises with answers enable students to self-test their understanding and encourage them to explore further through additional online material. Numerous simple computer programs are provided online as Electronic Supplementary Material. As a soil mechanics textbook, this volume is ideally suited to supporting undergraduate civil engineering students. “I am really delighted that your book is now published. When I “discovered” your course a few years ago, I was elated to have finally found a book that immediately resonated with me. Your approach to teaching soil mechanics is precise, rigorous, clear, concise, or in other words “crisp." My colleagues who share the teaching of Soil Mechanics 1 and 2 (each course is taught every semester) at the UMN have also adopted your book.” Emmanuel Detournay Professor at Dept. of Civil, Environmental, and Geo-Engineering, University of Minnesota, USA







Rock and Soil Mechanics


Book Description

Although theoretical in character, this book provides a useful source of information for those dealing with practical problems relating to rock and soil mechanics - a discipline which, in the view of the authors, attempts to apply the theory of continuum to the mechanical investigation of rock and soil media. The book is in two separate parts. The first part, embodying the first three chapters, is devoted to a description of the media of interest. Chapter 1 introduces the main argument and discusses the essence of the discipline and its links with other branches of science which are concerned, on the one hand, with technical mechanics and, on the other, with the properties, origins, and formation of rock and soil strata under natural field conditions. Chapter 2 describes mechanical models of bodies useful for the purpose of the discourse and defines the concept of the limit shear resistance of soils and rocks. Chapter 3 gives the actual properties of soils and rocks determined from experiments in laboratories and in situ. Several tests used in geotechnical engineering are described and interconnections between the physical state of rocks and soils and their rheological parameters are considered.The second part of the book considers the applications of various theories which were either first developed for descriptive purposes in continuum mechanics and then adopted in soil and rock mechanics, or were specially developed for the latter discipline. Chapter 4 discusses the application of the theory of linear viscoelasticity in solving problems of stable behaviour of rocks and soils. Chapter 5 covers the use of the groundwater flow theory as applied to several problems connected with water movement in an undeformable soil or rock skeleton. Chapter 6 is a natural expansion of the arguments put forward in the previous chapter. Here the movement of water is regarded as the cause of deformation of the rock or soil skeleton and the consolidation theory developed on this basis is presented in a novel formulation. Some new engineering solutions are also reported. The seventh chapter is devoted to the limit state theory as applied to the study of the mechanical behaviour of soils and rocks. It presents some new solutions and methods which include both static and kinematic aspects of the problem, and some original effective methods for investigating media of limited cohesion. The final chapter gives a systematic account of the mechanics of highly dispersed soils, commonly called clays.




Soil Mechanics of Earthworks, Foundations and Highway Engineering


Book Description

This is the third volume of a handbook which covers the whole field of soil mechanics, discussing deterministic and stochastic theories and methods, and showing how they can be used in conjunction with one another. The first volume discusses soil physics, while the second deals with the determination of physical characteristics of the soil. Australian Mining wrote of the Handbook ``a valuable addition to the extensive literature on the topic and will be found to be more useful than most.''The main objective of the third volume is to present solutions to the problems of engineering practice. It deals with the most important theoretical and practical problems of soil mechanics, discussing the following in detail: stability of earthworks, load-bearing capacity and settlement of shallow foundations, design of pile foundations, soil mechanics in road construction, improving the physical properties of soils, the characteristics of soil dynamics, foundations for machines and soil behaviour as affected by earthquakes. The book not only presents up-to-date deterministic methods, but also discusses solutions of probability theory in the fields of design and safety.The book is divided into six chapters covering the stability of slopes, landslides, load-bearing capacity and settlement of shallow foundations and pile foundations, soil mechanics in road construction, and the improvement of the physical characteristics of soil with special emphasis on machine foundations and earthquakes, giving detailed treatment of each subject. For example, the first chapter deals not only with the stability of slopes, but also discusses the natural and artificial effects, slope protection, filter design, stresses in embankments, and the time factor. In this way, the book gives a clear and comprehensive picture of the special fields of soil mechanics and its subjects. It is therefore emminently suitable for postgraduate engineers, and engineers working in the fields of geotechnics, earthworks, foundations, road construction, engineering geology and statistics, and the design of structures.




Rheological Fundamentals of Soil Mechanics


Book Description

Rheological Fundamentals of Soil Mechanics




Unsaturated Soil Mechanics


Book Description

Unsaturated Soil Mechanics is the first book to provide a comprehensive introduction to the fundamental principles of unsaturated soil mechanics. * Offers extensive sample problems with an accompanying solutions manual. * Brings together the rapid advances in research in unsaturated soil mechanics in one focused volume. * Covers advances in effective stress and suction and hydraulic conductivity measurement.




Introduction to Soil Mechanics Laboratory Testing


Book Description

A step-by-step text on the basic tests performed in soil mechanics, Introduction to Soil Mechanics Laboratory Testing provides procedural aids and elucidates industry standards. It also covers how to properly present data and document results. Containing numerical examples and figures, the information presented is based on American Society f




Soil Mechanics for Unsaturated Soils


Book Description

The principles and concepts for unsaturated soils are developed as extensions of saturated soils. Addresses problems where soils have a matric suction or where pore-water pressure is negative. Covers theory, measurement and use of the fundamental properties of unsaturated soils--permeability, shear strength and volume change. Includes a significant amount of case studies.