Soil Microbiome in Green Technology Sustainability


Book Description

This book addresses sustainable solutions to problems in various environments using microorganisms dwelling in the soil and sustainable approaches applicable now and in the future. It focuses on the role of the soil microbiome—a rich community of beneficial bacteria and fungi—in green technology for a safe environment. This volume delves into the dynamics between the soil ecosystem and microorganisms; their interrelationships; and man’s role in maintaining soil health and quality. The chapters cover topics such as pollution control, enhancing soil fertility, climate change mitigation, biocontrol of pathogens, and nanotechnology applications. The authors provide an expert analysis of how these microbial communities contribute to green technological sustainability. Readers will find contributions by renowned scholars who explore these themes through empirical research and practical case studies. The book highlights how these microorganisms can be major players in nature-based solutions while shifting perceptions from harmful to beneficial roles. Soil Microbiome in Green Technology Sustainability is essential reading for researchers, scholars, practitioners, students at all levels, and anyone interested in environmental science or biotechnology. It offers valuable insights into using microbial capabilities for sustainable development across various industrial sectors. This volume is particularly relevant for those involved in renewable energy, recycling, carbon capturing, storage technologies, or any field seeking eco-friendly solutions to global challenges.







Unravelling the Soil Microbiome


Book Description

This book explores the significance of soil microbial diversity to understand its utility in soil functions, ecosystem services, environmental sustainability, and achieving the sustainable development goals. With a focus on agriculture and environment, the book highlights the importance of the microbial world by providing state-of-the-art technologies for examining the structural and functional attributes of soil microbial diversity for applications in healthcare, industrial biotechnology, and bioremediation studies. In seven chapters, the book will act as a primer for students, environmental biotechnologists, microbial ecologists, plant scientists, and agricultural microbiologists. Chapter 1 introduces readers to the soil microbiome, and chapter 2 discusses the below ground microbial world. Chapter 3 addresses various methods for exploring microbial diversity, chapter 4 discusses the genomics methods, chapter 5 provides the metaproteomics and metatranscriptomics approaches and chapter 6 details the bioinformatics tools for soil microbial community analysis, and chapter 7 concludes the text with future perspectives on further soil microbial uses and applications.




Microbiome Under Changing Climate


Book Description

Microbiome Under Changing Climate: Implications and Solutions presents the latest biotechnological interventions for the judicious use of microbes to ensure optimal agricultural yield. Summarizing aspects of vulnerability, adaptation and amelioration of climate impact, this book provides an important resource for understanding microbes, plants and soil in pursuit of sustainable agriculture and improved food security. It emphasizes the interaction between climate and soil microbes and their potential role in promoting advanced sustainable agricultural solutions, focusing on current research designed to use beneficial microbes such as plant growth promoting microorganisms, fungi, endophytic microbes, and more. Changes in climatic conditions influence all factors of the agricultural ecosystem, including adversely impacting yield both in terms of quantity and nutritional quality. In order to develop resilience against climatic changes, it is increasingly important to understand the effect on the native micro-flora, including the distribution of methanogens and methanotrophs, nutrient content and microbial biomass, among others. - Demonstrates the impact of climate change on secondary metabolites of plants and potential responses - Incorporates insights on microflora of inhabitant soil - Explores mitigation processes and their modulation by sustainable methods - Highlights the role of microbial technologies in agricultural sustainability




Bioremediation and Phytoremediation Technologies in Sustainable Soil Management


Book Description

This 4-volume set focuses on the use of microbial bioremediation and phytoremediation to clean up pollutants in soil, such as pesticides, petroleum hydrocarbons, metals, and chlorinated solvents, which reduce the soil's fertility and renders it unfit for plant growth. Volume 2: Microbial Approaches and Recent Trends focuses on new and emerging techniques and approaches to address soil pollution. These include the use of rhizobacteria, archaea, cyanobacteria, and microalgae as biofertilizers and for soil bioremediation efforts. New technologies for assessment of soil bioremediation are explored also. The chapters provide in-depth coverage of the mechanisms, advantages, and disadvantages of the technologies used and highlight the use of different microbial enzymes that are used in the process of bioremediation and phytoremediation to clean up different pollutants without causing damage to the natural environment. Other volumes in the 4-volume set: • Volume 1: Fundamental Aspects and Contaminated Sites • Volume 3: Inventive Techniques, Research Methods, and Case Studies • Volume 4: Degradation of Pesticides and Polychlorinated Biphenyls Together, these four volumes provide in-depth coverage of the mechanisms, advantages, and disadvantages of the bioremediation and phytoremediation technologies for safe and sustainable soil management. The diverse topics help to arm biologists, agricultural engineers, environmental and soil scientists and chemists with the information and tools they need to address soil toxins that are a dangerous risk to plants, wildlife, humans and, of course, the soil itself.




Advances in Soil Microbiology: Recent Trends and Future Prospects


Book Description

This book presents a comprehensive collection of articles illustrating the importance of microbial community structure and function for ecosystem sustainability and environmental reclamation. It addresses a diverse range of topics, including microbial diversity, physiology, genomics, ecosystem function, interaction, metabolism, and the fruitful use of microbial communities for crop productivity and environmental remediation. In addition, the book explores issues ranging from general concepts on the diversity of microorganisms in soil, and ecosystem function to the evolution and taxonomy of soil microbiota, with future prospects. It covers cutting-edge methods in soil microbial ecological studies, rhizosphere microflora, the role of organic matter in plant productivity, biological nitrogen fixation and its genetics, microbial transformation of plant nutrients in soil, plant-growth-promoting rhizobacteria, and organic matter transformation. The book also discusses the application of microbes in biodegradation of xenobiotic contaminants. It covers bio-fertilizers and their role in sustainable agriculture and soil health, biological control of insect pests and plant pathogens, and the latest tools of omics in soil microbiology, i.e. genomics, proteomics, transcriptomics and metabolomics, which offer pioneering approaches to the exploration of microbial structure and function.




Encyclopedia of Renewable Energy, Sustainability and the Environment


Book Description

Encyclopedia of Renewable Energy, Sustainability and the Environment, Four Volume Set comprehensively covers all renewable energy resources, including wind, solar, hydro, biomass, geothermal energy, and nuclear power, to name a few. In addition to covering the breadth of renewable energy resources at a fundamental level, this encyclopedia delves into the utilization and ideal applications of each resource and assesses them from environmental, economic, and policy standpoints. This book will serve as an ideal introduction to any renewable energy source for students, while also allowing them to learn about a topic in more depth and explore related topics, all in a single resource.Instructors, researchers, and industry professionals will also benefit from this comprehensive reference. - Covers all renewable energy technologies in one comprehensive resource - Details renewable energies' processes, from production to utilization in a single encyclopedia - Organizes topics into concise, consistently formatted chapters, perfect for readers who are new to the field - Assesses economic challenges faced to implement each type of renewable energy - Addresses the challenges of replacing fossil fuels with renewables and covers the environmental impacts of each renewable energy




Bioinoculants with Nano-compounds to Improve Soil Health: A Step Toward Sustainable Agriculture


Book Description

In recent decades, agrochemicals have enhanced crop productivity to meet increasing global food requirements. However, prolonged and extensive use of agrochemicals has resulted in contamination that persists in the soil system which can be biomagnified in the food chain. Furthermore, toxic chemicals adversely affect important soil microbial biota, the key drivers of biogeochemical cycles. This concern has raised the need to develop environmentally friendly and cost-effective nano- and micro-biotechnology strategies to minimize the adverse impact of agrochemicals and pesticide residues on soil microbiota, soil fertility, and their biomagnification in food crops. Nano-bioinoculants - the combination of nano-compounds and bioinoculants - have been increasingly used as soil amendments. They can improve agri-potential and soil health by maintaining soil physico- and biological properties, microbial diversity, and the nutrient-solubilizing microbial population. They also aid in improving crop yields and reducing agrochemical and pesticide residues. Nano-bioinoculants are more efficient than other methods for removing contaminants due to their small size, high reactivity, and catalytic activities. Several types of nano-compounds (chitosan, zeolite, gypsum, and silicon dioxide) have been used in conjunction with beneficial microbes (bacteria fungi, actinomycetes & endophytic bacteria) as nano-bioinoculants.




Proceedings of the 3rd International Conference on Green Energy, Environment and Sustainable Development (GEESD2022)


Book Description

With the general acknowledgement that climate change constitutes an existential threat to both mankind and to the planet, the quest for more sustainable and environmentally-friendly ways of developing and maintaining human civilizations has become ever more important in recent years. This book presents the proceedings of GEESD2022, the 3rd International Conference on Green Energy, Environment and Sustainable Development. Due to continuing travel restrictions as a result of the COVID-19 pandemic, the conference was held as a hybrid event, part face-to-face in Beijing, China, and partly online via Zoom, on 29 June 2022. The 141 papers included here were selected after a rigorous 6-month process of evaluation and peer-review from the more than 300 submissions received, and are grouped into 7 sections: energy system and smart control; sustainable and green energy; environmental modeling and simulation; environmental science and pollution research; ecology and rural environment; building and environment; and water and mineral resources. The book provides an overview of the most up-to-date findings and technologies current in green energy, environment and sustainable development today, and will be of interest to all those working in the field.




Frontiers in Soil and Environmental Microbiology


Book Description

Soil harbours a wide range of microorganisms with biotic potentials which can be explored for social benefits. The book Frontiers in Soil and Environmental Microbiology comprises an overview of the complex inter-relationship between beneficial soil microbes and crop plants, and highlights the potential for utilisation to enhance crop productivity, bioremediation and soil health. The book focusses on important areas of research such as biocide production, pesticide degradation and detoxification, microbial decay processes, remediation of soils contaminated with toxic metals, industrial wastes, and hydrocarbon pollutants. Features Presents the state of the art of microbial research in environmental and soil microbiology Discusses an integrated and systematic compilation of microbes in the soil environment and its role in agriculture and plant growth and productivity Elucidates microbial application in environmental remediation Explores advanced genomics topics for uncultivable microbes of soil