Principles of Soil and Plant Water Relations


Book Description

Principles of Soil and Plant Water Relations, 2e describes the principles of water relations within soils, followed by the uptake of water and its subsequent movement throughout and from the plant body. This is presented as a progressive series of physical and biological interrelations, even though each topic is treated in detail on its own. The book also describes equipment used to measure water in the soil-plant-atmosphere system. At the end of each chapter is a biography of a scientist whose principles are discussed in the chapter. In addition to new information on the concept of celestial time, this new edition also includes new chapters on methods to determine sap flow in plants dual-probe heat-pulse technique to monitor water in the root zone. Provides the necessary understanding to address advancing problems in water availability for meeting ecological requirements at local, regional and global scales Covers plant anatomy: an essential component to understanding soil and plant water relations




Principles of Soil and Plant Water Relations


Book Description

Principles of Soil and Plant Water Relations combines biology and physics to show how water moves through the soil-plant-atmosphere continuum. This text explores the instrumentation and the methods used to measure the status of water in soil and plants. Principles are clearly presented with the aid of diagrams, anatomical figures, and images of instrumentation. The methods on instrumentation can be used by researchers, consultants, and the military to monitor soil degradation, including measurements of soil compaction, repellency, oxygen diffusion rate, and unsaturated hydraulic conductivity. Intended for graduate students in plant and soil science programs, this book also serves as a useful reference for agronomists, plant ecologists, and agricultural engineers. * Principles are presented in an easy-to-understand style * Heavily illustrated with more than 200 figures; diagrams are professionally drawn * Anatomical figures show root, stem, leaf, and stomata * Figures of instruments show how they work * Book is carefully referenced, giving sources for all information * Struggles and accomplishments of scientists who developed the theories are given in short biographies.




Water Relations of Plants and Soils


Book Description

Water Relations of Plants and Soils, successor to the seminal 1983 book by Paul Kramer, covers the entire field of water relations using current concepts and consistent terminology. Emphasis is on the interdependence of processes, including rate of water absorption, rate of transpiration, resistance to water flow into roots, soil factors affecting water availability. New trends in the field, such as the consideration of roots (rather than leaves) as the primary sensors of water stress, are examined in detail. Addresses the role of water in the whole range of plant activities Describes molecular mechanisms of water action in the context of whole plants Synthesizes recent scientific findings Relates current concepts to agriculture and ecology Provides a summary of methods




Water Relations of Plants


Book Description

Water Relations of Plants attempts to explain the importance of water through a description of the factors that control the plant water balance and how they affect the physiological processes that determine the quantity and quality of growth. Organized into 13 chapters, this book first discusses the functions and properties of water and the plant cell water relations. Subsequent chapters focus on measurement and control of soil water, as well as growth and functions of root. This book also looks into the water absorption, the ascent of sap, the transpiration, and the water stress and its effects on plant processes and growth. This book will be useful for students, teachers, and investigators in both basic and applied plant science, as well as for botanists, agronomists, foresters, horticulturists, soil scientists, and even laymen with an interest in plant water relations.




Soil~Plant Relationships


Book Description

Soil-plant relationships once had a limited meaning. To the student of agriculture it meant creating optimum conditions for plant growth. To the ecologist it meant explaining some plant community distribu tion patterns by correlation with soil type or conditions. This dual view has been greatly expanded at an academic level by the discovery of the ecosystem as a practical working unit. A flood of concepts and information subsequently emerged from the International Biological Programme. At a totally different level of resolution, it is appreciated that certain soil-based ecological problems have a molecular basis, and must be addressed by physiological or biochemical approaches. From ecosystem to molecule we have powerful new tools to increase the flow of ecological data and process it for interpretation. Society is now experiencing a series of adverse global phenomena which demand an appreciation of soil-plant relationships. These include desertification leading to famine, soil degradation accom panying forest destruction, acidification of watersheds and the spasmodic dispersal of radionuclides and other pollutants. It is public policy, not merely to identify problems, but to seek strategies for minimising their ill effects. This book is written as a guide to soil-plant relationships, cen trally oriented towards ecology, but of interest to students of geo graphy and agriculture. For ecology students it will bring together subfields such as microbiology, plant physiology, systematics and pro vide interfaces with animal biology, meteorology and soil science.







Plant-water Relationships


Book Description

Some properties of water and aqueous solutions. Environmental aspects of plant-water relationships. The state of water in soils. Movement of water in soils. Water as a plant component. Water exchanges in plant cells and tissues. Water movement through the plant. Special aspects of transpiration. Development and significance of internal water deficits.




Soil Water Deficit and Physiological Issues in Plants


Book Description

This book explores the impact of soil water deficiency on various aspects of physiological processes in plants. The book explains the effects under soil water deficit condition such as lowering of plant water content, disturbance in carbon metabolism such in photosynthesis, photorespiration and respiration as well as effects of soil water deficit on nitrogen metabolism. The book also educates the readers about, mineral nutrition under soil water deficit condition and roles of different nutrient to overcome water deficit. Changes in growth and development pattern of plant under soil water deficit condition and effects on growth and development are elaborated. This book is of interest to teachers, researchers, scientists in botany and agriculture. Also the book serves as additional reading material for undergraduate and graduate students of agriculture, forestry, ecology, soil science, and environmental sciences. National and international agricultural scientists, policy makers will also find this to be a useful read. The in depth description of the major physiological issues in plants under soil water deficit that are presented in this book will help breeders tailoring crops for desirable physiological survival traits in the face of increasing soil water deficit. This book is an impactful addition to the library of any faculty members, researchers, agricultural policy planner, post graduate or student studying in plant physiology, biochemistry, microbiology and other subjects related to crop husbandry.




Elevated Carbon Dioxide


Book Description

Drawing on a host of scientific studies, this text explores how rising levels of CO2 in the atmosphere have impacted water in plants and soils. It discusses drought, the soil-plant-atmosphere continuum, the soil atmosphere, root growth, and variable oxygen concentration of soil. The book also covers the use of carbon isotope ratios in plant science, stomatal conductance and density, transpiration and evapotranspiration, water use efficiency, C4 photosynthesis, plant anatomy, phenology, and measures of plant growth. More than 200 high quality figures illustrate the concepts discussed.




Fundamentals of Irrigation and On-farm Water Management: Volume 1


Book Description

Agriculture is one of the few industries that has been creating resources conti- ously from nature. Sustainability of this industry is a crucial issue at now-a-days. Agricultural technologies are important to feed the growing world population. Agricultural engineering has been applying scienti?c principles for the optimal use of natural resources in agricultural production for the bene?t of humankind. The role of agricultural engineering is increasing in the coming days at the forthcoming challenges of producing more food with less water coupled with climate uncertainty. I am happy to know that a book entitled "Fundamentals of Irrigation and On-farm Water Management", written by Engr. Dr. M. H. Ali, is going to be p- lished by Springer. The book is designed to cover the major ?elds of agricultural and environmental engineering such as weather, plant, soil, water, and basics of on-farm water management. The book will be quite useful for the students of agricultural engineering. Students of other related branches of engineering s- ences, and engineers working in the ?eld and at research institutes will also be beni?ted. The book may serve as a text book for the students and as a practical hand-book for the practitioners and researchers in the ?eld of irrigation and on-farm water management. Utilization of the recent literature in the area and citation of relevant journals / reports have added a special value to this book. Considering the topics covered, engineers, scientists, practitioners, and educators will ?nd this book as a valuable resource.