Solar Energy Capture Materials


Book Description

Energy is an important area of contemporary research, with clear societal benefits. It is a fast-developing and application-driven research area, with chemistry leading the discovery of new solids, which are then studied by physicists and materials scientists. Solar Energy Capture Materials introduces a range of the different inorganic materials used, with an emphasis on how solid-state chemistry allows development of new functional solids for energy applications. Dedicated chapters cover silicon-based photovoltaic devices, compound semiconductor-based solar cells, dye-sensitized solar cells (DSC), solution processed solar cells and emerging materials. Edited and written by world-renowned scientists, this book will provide a comprehensive introduction for advanced undergraduates, postgraduates and researchers wishing to learn about the topic.




Solar Energy Capture Materials


Book Description

This book introduces a range of the different inorganic materials used in solar energy capture materials.




Solar Cells


Book Description

Solar cell energy is the single most pressing issue facing humanity, with a more technologically advanced society requiring better energy resources. This book discusses technologies broadly, depending on how they capture and distribute solar energy or convert it into solar power. The major areas covered in this book are: • The theory of solar cells, which explains the conversion of light energy in photons into electric current. The theoretical studies are practical because they predict the fundamental limits of a solar cell. • The design and development of thin-film technology-based solar cells. • State of the art for bulk material applied for solar cells based on crystalline silicon (c-Si), also known as “solar grade silicon,” and emerging photovoltaics.




Solar Cells


Book Description

Enormous leaps forward in the efficiency and the economy of solar cells are being made at a furious pace. New materials and manufacturing processes have opened up new realms of possibility for the application of solar cells. Crystalline silicon cells are increasingly making way for thin film cells, which are spawning experimentation with third-generation high-efficiency multijunction cells, carbon-nanotube based cells, UV light for voltage enhancement, and the use of the infrared spectrum for night-time operation, to name only a few recent advances. This thoroughly updated new edition of Markvart and Castaner's Solar Cells, extracted from their industry standard Practical Handbook of Photovoltaics, is the definitive reference covering the science and operation, materials and manufacture of solar cells. It is essential reading for engineers, installers, designers, and policy-makers who need to understand the science behind the solar cells of today, and tomorrow, in order to take solar energy to the next level. A thorough update to the definitive reference to solar cells, created by a cast of international experts from industry and academia to ensure the highest quality information from multiple perspectives Covers the whole spectrum of solar cell information, from basic scientific background, to the latest advances in materials, to manufacturing issues, to testing and calibration. Case studies, practical examples and reports on the latest advances take the new edition of this amazing resource beyond a simple amalgamation of a vast amount of knowledge, into the realm of real world applications




Green Energy


Book Description

Like most industries around the world, the energy industry has also made, and continues to make, a long march toward “green” energy. The science has come a long way since the 1970s, and renewable energy and other green technologies are becoming more and more common, replacing fossil fuels. It is, however, still a struggle, both in terms of energy sources keeping up with demand, and the development of useful technologies in this area. To maintain the supply for electrical energy, researchers, engineers and other professionals in industry are continuously exploring new eco-friendly energy technologies and power electronics, such as solar, wind, tidal, wave, bioenergy, and fuel cells. These technologies have changed the concepts of thermal, hydro and nuclear energy resources by the adaption of power electronics advancement and revolutionary development in lower manufacturing cost for semiconductors with long time reliability. The latest developments in renewable resources have proved their potential to boost the economy of any country. Green energy technology has not only proved the concept of clean energy but also reduces the dependencies on fossil fuel for electricity generation through smart power electronics integration. Also, endless resources have more potential to cope with the requirements of smart building and smart city concepts. A valuable reference for engineers, scientists, chemists, and students, this volume is applicable to many different fields, across many different industries, at all levels. It is a must-have for any library.




How Solar Energy Became Cheap


Book Description

Solar energy is a substantial global industry, one that has generated trade disputes among superpowers, threatened the solvency of large energy companies, and prompted serious reconsideration of electric utility regulation rooted in the 1930s. One of the biggest payoffs from solar’s success is not the clean inexpensive electricity it can produce, but the lessons it provides for innovation in other technologies needed to address climate change. Despite the large literature on solar, including analyses of increasingly detailed datasets, the question as to how solar became inexpensive and why it took so long still remains unanswered. Drawing on developments in the US, Japan, Germany, Australia, and China, this book provides a truly comprehensive and international explanation for how solar has become inexpensive. Understanding the reasons for solar’s success enables us to take full advantage of solar’s potential. It can also teach us how to support other low-carbon technologies with analogous properties, including small modular nuclear reactors and direct air capture. However, the urgency of addressing climate change means that a key challenge in applying the solar model is in finding ways to speed up innovation. Offering suggestions and policy recommendations for accelerated innovation is another key contribution of this book. This book will be of great interest to students and scholars of energy technology and innovation, climate change and energy analysis and policy, as well as practitioners and policymakers working in the existing and emerging energy industries.




Photovoltaic Solar Energy


Book Description

Solar PV is now the third most important renewable energy source, after hydro and wind power, in terms of global installed capacity. Bringing together the expertise of international PV specialists Photovoltaic Solar Energy: From Fundamentals to Applications provides a comprehensive and up-to-date account of existing PV technologies in conjunction with an assessment of technological developments. Key features: Written by leading specialists active in concurrent developments in material sciences, solar cell research and application-driven R&D. Provides a basic knowledge base in light, photons and solar irradiance and basic functional principles of PV. Covers characterization techniques, economics and applications of PV such as silicon, thin-film and hybrid solar cells. Presents a compendium of PV technologies including: crystalline silicon technologies; chalcogenide thin film solar cells; thin-film silicon based PV technologies; organic PV and III-Vs; PV concentrator technologies; space technologies and economics, life-cycle and user aspects of PV technologies. Each chapter presents basic principles and formulas as well as major technological developments in a contemporary context with a look at future developments in this rapidly changing field of science and engineering. Ideal for industrial engineers and scientists beginning careers in PV as well as graduate students undertaking PV research and high-level undergraduate students.




Metal Semiconductor Core-shell Nanostructures for Energy and Environmental Applications


Book Description

Metal Semiconductor Core-Shell Nanostructures for Energy and Environmental Applications provides a concise, scholarly overview of current research into the characterization of metal semiconductor core-shell nanostructures; the book shows how their properties can be best used in energy and environmental applications, particularly for solar cell and catalysis application. Coverage is also given to the effect of metal nanoparticle for charge generation or charge separation. The book is a valuable resource for academic researchers working in the areas of nanotechnology, sustainable energy and chemical engineering, and is also of great use to engineers working in photovoltaic and pollution industries. - Includes a clear method for synthesis of core-shell nanomaterials - Explores how metal semiconductor core-shell nanostructures can be used to improve the efficiency of solar cells - Explains how the characteristics of metal semiconductor core-shell nanostructures make them particularly useful for sustainable energy and environmental applications




Solar Panels and Photovoltaic Materials


Book Description

Despite their wide availability and relatively low prices, the conventional energy sources have harmful consequences on the environment and are exhaustible. In order to circumvent these negative effects, the renewable energies in general and the photovoltaic energy in particular are becoming more and more attractive. Solar cell is an electrical device that converts light into electricity at the atomic level. These devices use inorganic or organic semiconductor materials that absorb photons with energy greater than their bandgap to promote energy carriers into their conduction band. They do not pollute the atmosphere by releasing harmful gases, do not require any fuel to produce electricity, and do not move parts so they are rugged. Solar panels have a very long life and do not need much maintenance.




Energy Saving Coating Materials


Book Description

Energy Saving Coating Materials: Design, Process, Implementation and Developments provides comprehensive information regarding recent materials advancements and design aspects and integration for infra-red radiation regulators, along with future developments of zero emission buildings. The key opportunities and challenges for the usage of existing heat regulation materials and their implementation for commercial aspects are explored. The fundamental interaction between electromagnetic waves and materials are discussed, along with materials synthesis, design and integration of coatings for smart window applications. This book presents recent developments of innovative technologies comprising energy saving materials and coatings which are key considerations for achieving vital energy saving milestones.