Solar Light Harvesting with Nanocrystalline Semiconductors


Book Description

This book explains the use of nanocrystalline semiconductors in the harvesting of energy from solar light. It introduces promising methodology and technology which may help to increase the efficiency of light harvesting – one of the major challenges on the way toward sustainable energy generation.The book starts with a general introduction to the photochemistry of semiconductor nanocrystals. In the introductory chapter, the author also provides a frank and critical discussion on perspectives and limitations of the photocatalytic processes for solar light conversion including a historical account on semiconductor photocatalysis. He discusses that (and also why) it is a long way from laboratory prototypes to real sustainable technologies.The following chapters outline the conversion of solar light energy in semiconductor nanophotocatalysis on the one hand, and to (electric) energy in nanocrystalline semiconductor-based solar cells on the other hand. Topics addressed include nanophotocatalytic hydrogen production, artificial photosynthesis, quantum-dot sensitized liquid-junction and bulk heterojunction solar cells. Perspectives and opportunities, but also bottlenecks and limitations are discussed and the novel systems compared with established technology, such as classical silicon solar cells. While readers in this way learn to understand the basics and get introduced to the current research in the field, the final chapter provides them with the necessary knowledge about methodology, both in synthesis and characterization of semiconductor nanophotocatalysts and semiconductor nanomaterials, including examples for the practice of photocatalytic experiments and the studies of semiconductor-based solar cells.




Semiconductor Materials and Modelling for Solar Cells


Book Description

The book presents a comprehensive survey about advanced solar cell technologies. Focus is placed on semiconductor materials, solar cell efficiency, improvements in surface recombination velocity, charge density, high ultraviolet (UV) sensitivity, modeling of solar cells etc. The book references 281 original resources with their direct web links for in-depth reading. Keywords: Solar Cells, Thin Film Solar Cells, Solar Cell Efficiency, Semiconductor Materials, Surface Recombination Velocity, Charge Density, High UV Sensitivity, Heavily-doped Silicon Wafers, Amorphous Semiconductors, Nanocrystalline Semiconductors, Field Effect, Ferroelectric Semiconductors, Solar Cell Modelling.




Photoelectrochemical Solar Cells


Book Description

This book provides a broad overall view of the photoelectrochemical systems for solar hydrogen generation, and new and novel materials for photoelectrochemical solar cell applications. Hydrogen has a huge potential as a safe and efficient energy carrier, which can be used directly in fuel cells to obtain electricity, or it can be used in the chemical industry, fossil fuel processing or ammonia production. However, hydrogen is not freely available in nature and it needs to be produced. Photoelectrochemical solar cells produce hydrogen from water using sunlight and specialized semiconductors, which use solar energy to directly dissociate water molecules into hydrogen and oxygen. Hence, these systems reduce fossil fuels dependency and curb carbon dioxide emissions. Photoelectrochemical Solar Cells compiles the objectives related to the new semiconductor materials and manufacturing techniques for solar hydrogen generation. The chapters are written by distinguished authors who have extensive experience in their fields. Multidisciplinary contributors from physics, chemical engineering, materials science, and electrical and electronic information engineering, provide an in-depth coverage of the topic. Readers and users have the opportunity to learn not only about the fundamentals but also the various aspects of the materials science and manufacturing technologies for photoelectrochemical solar cells and the hydrogen generation systems via photoelectrochemical conversion. This groundbreaking book features: Description of solar hydrogen generation via photoelectrochemical process Designs of photoelectrochemical systems Measurements and efficiency definition protocols for photoelectrochemical solar cells Metal oxides for solar water splitting Semiconductor photocatalysts Bismuth vanadate-based materials for solar water splitting Copper-based chalcopyrite and kesterite materials for solar water splitting Eutectic composites for solar water splitting Photocatalytic formation of composite electrodes




Handbook of Nanostructured Materials and Nanotechnology, Five-Volume Set


Book Description

Nanostructured materials is one of the hottest and fastest growing areas in today's materials science field, along with the related field of solid state physics. Nanostructured materials and their based technologies have opened up exciting new possibilites for future applications in a number of areas including aerospace, automotive, x-ray technology, batteries, sensors, color imaging, printing, computer chips, medical implants, pharmacy, and cosmetics. The ability to change properties on the atomic level promises a revolution in many realms of science and technology. Thus, this book details the high level of activity and significant findings are available for those involved in research and development in the field. It also covers industrial findings and corporate support. This five-volume set summarizes fundamentals of nano-science in a comprehensive way. The contributors enlisted by the editor are at elite institutions worldwide. Key Features * Provides comprehensive coverage of the dominant technology of the 21st century * Written by 127 authors from 16 countries, making this truly international * First and only reference to cover all aspects of nanostructured materials and nanotechnology




Atomic and Nano Scale Materials for Advanced Energy Conversion, 2 Volumes


Book Description

Atomic and Nano Scale Materials for Advanced Energy Conversion Discover the latest advancements in energy conversion technologies used to develop modern sustainable energy techniques In Atomic and Nano Scale Materials for Advanced Energy Conversion, expert interdisciplinary researcher Dr. Zongyou Yin delivers a comprehensive overview of nano-to-atomic scale materials science, the development of advanced electrochemical, photochemical, photoelectrochemical, and photovoltaic energy conversion strategies, and the applications for sustainable water splitting and other technologies. The book offers readers cutting-edge information of two-dimensional nano, mixed-dimensional nano, nano rare earth, clusters, and single atoms. It constructively evaluates emerging nano-to-atomic scale energy conversion technologies for academic research and development (R&D) researchers and industrial technique consultants and engineers. The author sets out a systematic analysis of recent energy-conversion science, covering topics like adaptable manufacturing of Van der Waals heterojunctions, mixed-dimensional junctions, tandem structures, and superlattices. He also discusses function-oriented engineering in polymorphic phases, photon absorption, excitons-charges conversion, non-noble plasmonics, and solid-liquid-gas interactions. Readers will also benefit from: A thorough introduction to emerging nanomaterials for energy conversion, including electrochemical, photochemical, photoelectrochemical, and photovoltaic energy conversion An exploration of clusters for energy conversion, including electrochemical, photochemical, and photoelectrochemical clusters Practical discussions of single atoms for energy conversion in electrochemical, photochemical, and photoelectrochemical energy conversion technologies A thorough analysis of future perspectives and directions in advanced energy conversion technology Perfect for materials scientists, photochemists, electrochemists, and inorganic chemists, Atomic and Nano Scale Materials for Advanced Energy Conversion is also a must-read resource for catalytic chemists interested in the intersection of advanced chemistry and physics in energy conversion technologies.




Photoelectrochemical Water Splitting


Book Description

Photoelectrochemical (PEC) water splitting is a highly promising process for converting solar energy into hydrogen energy. The book presents new cutting-edge research findings in this field. Subjects covered include fabrication and characteristics of various electrode materials, cell design and strategies for enhancing the properties of PEC electrode materials. Keywords: Renewable Energy Sources, Solar Energy Conversion, Hydrogen Production, Photoelectrochemical Water Splitting, Electrode Materials for Water Splitting, Transition Metal Chalcogenide Electrodes, Narrow Bandgap Semiconductor Electrodes, Ti-based Electrode Materials, BiVO4 Photoanodes, Noble Electrode Materials, Cell Design for Water Splitting.




Semiconductor Nanocrystals and Metal Nanoparticles


Book Description

Semiconductor nanocrystals and metal nanoparticles are the building blocks of the next generation of electronic, optoelectronic, and photonic devices. Covering this rapidly developing and interdisciplinary field, the book examines in detail the physical properties and device applications of semiconductor nanocrystals and metal nanoparticles. It begins with a review of the synthesis and characterization of various semiconductor nanocrystals and metal nanoparticles and goes on to discuss in detail their optical, light emission, and electrical properties. It then illustrates some exciting applications of nanoelectronic devices (memristors and single-electron devices) and optoelectronic devices (UV detectors, quantum dot lasers, and solar cells), as well as other applications (gas sensors and metallic nanopastes for power electronics packaging). Focuses on a new class of materials that exhibit fascinating physical properties and have many exciting device applications. Presents an overview of synthesis strategies and characterization techniques for various semiconductor nanocrystal and metal nanoparticles. Examines in detail the optical/optoelectronic properties, light emission properties, and electrical properties of semiconductor nanocrystals and metal nanoparticles. Reviews applications in nanoelectronic devices, optoelectronic devices, and photonic devices.




Nanoenergy


Book Description

This book discuss the recent advances and future trends of nanoscience in solar energy conversion and storage. This second edition revisits and updates all the previous book chapters, adding the latest advances in the field of Nanoenergy. Four new chapters are included on the principles and fundamentals of artificial photosynthesis using metal transition semiconductors, perovskite solar cells, hydrogen storage and neutralization batteries. More fundamental aspects can be found in this book, increasing the comparison between theory-experimental achievements and latest developments in commercial devices.




Self-Assembled Organic-Inorganic Nanostructures


Book Description

The current state and perspectives in natural and life sciences are strongly linked to the development of novel complex organic-inorganic materials at various levels of organization, including semiconductor quantum dots (QDs) and QD-based nanostructures with unique optical and physico-chemical properties. This book provides a comprehensive description of the morphology and main physico-chemical properties of self-assembled inorganic-dye nanostructures as well as some applications in the field of nanotechnology. It crosses disciplines to examine essential nanoassembly principles of QD interaction with organic molecules, excited state dynamics in nanoobjects, theoretical models, and methodologies. Based on ensemble and single-nanoobject detection, the book quantitatively shows (for the first time on a series of nanoassemblies) that surface-mediated processes (formation of trap states) dictate the probability of several of the most interesting and potentially useful photophysical phenomena (FRET- or non-FRET-induced quenching of QD photoluminescence) observed for colloidal QDs and QD–dye nanoassemblies. Further, nanostructures can be generated by nanolithography and thereafter selectively decorated with dye molecules. A similar approach applies to natural nanosized surface heterogeneities.