Solar Neutrinos - Proceedings Of The 5th International Solar Neutrino Conference


Book Description

In 2018 solar physics and neutrino research celebrated various historical highlight events. Among them were 80 years of the paper by Hans Bethe discussing solar fusion cycles as energy source of stars, the first results from the Homestake chlorine experiment celebrating 50 years as well as the discovery of neutrino oscillations 20 years ago by Super-Kamiokande. Since the last International Solar Neutrino Conference in 1997, solar neutrino detection was recognized by two Nobel Prizes, given to Raymond Davis Jr. (2002) and Arthur McDonald (2015).The present proceedings volume is based on the given talks and provides a comprehensive and detailed overview of recent developments and discoveries in the field of solar neutrino physics. Articles were written by renowned experts of their field and cover a wide range in experiments and theory from current and future solar neutrino measurements, elemental abundances, nuclear astrophysics, helioseismology, impact on general neutrino physics and more. Further contributions focus on experiments like Homestake, SAGE and GALLEX which are widely known as historic milestones in the field of solar neutrino physics.




Binary Stars, Neutrinos, and Liquid Crystals:


Book Description

This book traces the parallel paths of physics and astronomy at the University of Pennsylvania, starting with their genesis in the 18th century, through the rising stature of both departments in the 20th century, and concluding with their unification in 1994. Along the way we meet David Rittenhouse, who observed the transit of Venus in 1769, Charles Doolittle, whose remarkable beard would freeze to his telescope on cold nights, Gaylord Harnwell, who transformed first the physics department and then the entire university, and Raymond Davis, who uncovered a mystery in the middle of the sun. The stories are tragic (Arthur Goodspeed failed to discover X-rays through inattention), horrifying (Dicran Kabakjian poisoned an entire neighborhood), and celebratory (three Penn physicists received the Nobel Prize in the late 20th Century). The reader will gain an appreciation, not just of the history of one institution, but of the ways these two disciplines both intersect and complement each other.




Astrophysics, Astronomy and Space Sciences in the History of the Max Planck Society


Book Description

This book provides the first comprehensive historical account of the evolution of scientific traditions in astronomy, astrophysics, and the space sciences within the Max Planck Society. Structured with in-depth archival research, interviews with protagonists, unpublished photographs, and an extensive bibliography, it follows a unique history: from the post-war relaunch of physical sciences in West Germany, to the spectacular developments and successes of cosmic sciences in the second half of the 20th century, up to the emergence of multi-messenger astronomy. It reveals how the Society acquired national and international acclaim in becoming one of the world’s most productive research organizations in these fields.




Particle Physics At The Year Of 150th Anniversary Of The Mendeleev's Periodic Table Of Chemical Elements - Proceedings Of The Nineteenth Lomonosov Conference On Elementary Particle Physics


Book Description

The volume of these proceedings is devoted to a wide variety of items, both in theory and experiment, of particle physics such as electroweak theory, fundamental symmetries, tests of standard model and beyond, neutrino and astroparticle physics, hadron physics, gravitation and cosmology, physics at the present and future accelerators.







New Worlds In Astroparticle Physics - Proceedings Of The Fifth International Workshop


Book Description

In international workshops on “New Worlds in Astroparticle Physics” held biannually, astronomers, astrophysicists and particle physicists discuss recent developments in the exciting and rapidly developing field of Astroparticle Physics. Similar to previous workshops, this 5th international workshop introduced experimental, observational and theoretical subjects through review lectures. This was followed by shorter contributions on the recent developments in Astroparticle Physics. This workshop covered an array of subjects like cosmic rays, gravitational waves, space radiation, neutrino physics, cosmological parameters, black holes, dark matter and dark energy.




Calorimetry In High Energy Physics - Proceedings Of The Fifth International Conference


Book Description

The Fifth International Conference on Calorimetry in High Energy Physics was held Sept. 25 - Oct. 1, 1994 at Brookhaven National Laboratory. The results presented show that calorimetry is a key element in the experiments at the frontier. As these experiments evolve, there are new challenges for calorimetry in terms of performance in energy and position resolution at ever increasing rates. The proceedings document the state-of-the-art in calorimetry.




Neutrinos


Book Description

Neutrinos are one of the most abundant particles in the universe. Because they have very little interaction with matter, however, they are incredibly difficult to detect. Neutrinos are similar to the more familiar electron, with one crucial difference: neutrinos do not carry electric charge. Because neutrinos are electrically neutral, they are not affected by the electromagnetic forces which act on electrons. Three types of neutrinos are known. Each type or 'flavour' of neutrino is related to a charged particle (which gives the corresponding neutrino its name). Hence, the 'electron neutrino' is associated with the electron, and two other neutrinos are associated with heavier versions of the electron called the muon and the tau. The book presents citations from the literature for the last three years from the journal literature and the existent book literature. Access is provided by subject, author and title indexes.




Solar Neutrinos


Book Description

In 2018 solar physics and neutrino research celebrated various historical highlight events. Among them were 80 years of the paper by Hans Bethe discussing solar fusion cycles as energy source of stars, the first results from the Homestake chlorine experiment celebrating 50 years as well as the discovery of neutrino oscillations 20 years ago by Super-Kamiokande. Since the last International Solar Neutrino Conference in 1997, solar neutrino detection was recognized by two Nobel Prizes, given to Raymond Davis Jr. (2002) and Arthur McDonald (2015). The present proceedings volume is based on the given talks and provides a comprehensive and detailed overview of recent developments and discoveries in the field of solar neutrino physics. Articles were written by renowned experts of their field and cover a wide range in experiments and theory from current and future solar neutrino measurements, elemental abundances, nuclear astrophysics, helioseismology, impact on general neutrino physics and more. Further contributions focus on experiments like Homestake, SAGE and GALLEX which are widely known as historic milestones in the field of solar neutrino physics.




Particle Physics And The Universe, Proceedings Of Nobel Symposium 109


Book Description

It is generally felt in the cosmology and particle astrophysics community that we have just entered an era which later can only be looked back upon as a golden age. Thanks to the rapid technical development, with powerful new telescopes and other detectors taken into operation at an impressive rate, and the accompanying advancement of theoretical ideas, the picture of the past, present and future Universe is getting ever clearer. Some of the most exciting new findings and expected future developments are discussed in this invaluable volume.The topics covered include the physics of the early Universe and ultra-high energy processes. Emphasis is also put on neutrino physics and astrophysics, with the evidence for non-zero neutrino masses emerging from both solar neutrinos and atmospheric neutrinos covered in great depth. Another field with interesting new results concerns the basic cosmological parameters, where both traditional methods and the potential of new ones, like deep supernova surveys and acoustic peak detections in the cosmic microwave background, are thoroughly discussed. Various aspects of the dark matter problem, such as gravitational lensing estimates of galaxy masses, cluster evolution and hot cluster electron distortions of the thermal microwave background spectrum, are also discussed, as are particle physics candidates of dark matter and methods to detect them. Cosmic rays of matter and antimatter are included as a topic, and so is the problem of the enigmatic dark energy of the vacuum.