Solar Technology. Future Energy Research Priorities


Book Description

Research Paper (postgraduate) from the year 2019 in the subject Geography / Earth Science - Physical Geography, Geomorphology, Environmental Studies, , language: English, abstract: The paper is developed with intentions to evaluate energy supply systems in African poorest countries and a comparison to those that have amicable energy systems. The focus is however emphasized on Malawi as the country is hardly hit by energy poverty, and its subsequent economic status currently ranked among top ten poorest African countries justify the goal to discuss on the renewable energy technology to be implemented as the matter of agency. Malawi mostly relies upon biomass as a source of energy to either cook, light or even for industrial sector. With the increasing population growth which surpasses that of the world growth, currently at 3.3% as of august, 2014 statistical information, proves the need for a proactive approach towards combating energy situation which is currently sustained by intermittent supplement of ESCOM statutory company. The situation however is unreliable as the electricity supply is almost similar to disco lights thereby affecting industrial manufacturing service sector. The research is mostly embarking on solar energy as the best priority and a room for research is being revealed. This is basically because solar energy is free and can be tapped directly as has been the case in the past where it has been used for drying animal skins and also dehydrating raw foods.




Future of solar photovoltaic


Book Description

This study presents options to fully unlock the world’s vast solar PV potential over the period until 2050. It builds on IRENA’s global roadmap to scale up renewables and meet climate goals.




Solar Power Finance Without The Jargon


Book Description

Solar power has become big business, with $131 billion invested in 2018, up from just $11.2 billion in 2004 but down from $171 billion in 2017 as unit costs fell. New installed capacity grew from 1.1GW in 2004 to about 107GW in 2018, a steady rise as solar begins to compete with fossil fuels on cost and to be built in nearly every country.This is a book for the solar workers of the future, a business book for those without a business or economics background and those simply curious about major shifts happening in the world energy economy. Key financial, economic and technical concepts are interspersed with the history of the first decade of cheap solar power, and the author's experience of being part of a successful startup in the clean energy sector.Related Link(s)




Renewable Power Pathways


Book Description

Renewable Power Pathways is the result of a study by the National Research Council (NRC) Committee for the Programmatic Review of the Office of Power Technologies (OPT) review of the U.S. Department of Energy's (DOE) Office of Power Technologies and its research and development (R&D) programs. The OPT, which is part of the Office of Energy Efficiency and Renewable Energy, conducts R&D programs for the production of electricity from renewable energy sources. Some of these programs are focused on photovoltaic, wind, solar, thermal, geothermal, biopower, and hydroelectric energy technologies; others are focused on energy storage, electric transmission (including superconductivity), and hydrogen technologies. A recent modest initiative is focused on distributed power-generation technologies. This report reviews the activities of each of OPT's programs and makes recommendations for OPT as a whole and major recommendations for individual OPT programs.




Renewable Energy Sources and Climate Change Mitigation


Book Description

This Intergovernmental Panel on Climate Change Special Report (IPCC-SRREN) assesses the potential role of renewable energy in the mitigation of climate change. It covers the six most important renewable energy sources - bioenergy, solar, geothermal, hydropower, ocean and wind energy - as well as their integration into present and future energy systems. It considers the environmental and social consequences associated with the deployment of these technologies, and presents strategies to overcome technical as well as non-technical obstacles to their application and diffusion. SRREN brings a broad spectrum of technology-specific experts together with scientists studying energy systems as a whole. Prepared following strict IPCC procedures, it presents an impartial assessment of the current state of knowledge: it is policy relevant but not policy prescriptive. SRREN is an invaluable assessment of the potential role of renewable energy for the mitigation of climate change for policymakers, the private sector, and academic researchers.




Photovoltaic/Thermal (PV/T) Systems


Book Description

This book provides the most up-to-date information on hybrid solar cell and solar thermal collectors, which are commonly referred to as Photovoltaic/Thermal (PV/T) systems. PV/T systems convert solar radiation into thermal and electrical energy to produce electricity, utilize more of the solar spectrum, and save space by combining the two structures to cover lesser area than two systems separately. Research in this area is growing rapidly and is highlighted within this book. The most current methods and techniques available to aid in overall efficiency, reduce cost and improve modeling and system maintenance are all covered. In-depth chapters present the background and basic principles of the technology along with a detailed review of the most current literature. Moreover, the book details design criteria for PV/T systems including residential, commercial, and industrial applications. Provides an objective and decisive source for the supporters of green and renewable source of energy Discusses and evaluates state-of-the-art PV/T system designs Proposes and recommends potential designs for future research on this topic




Achieving the Paris Climate Agreement Goals


Book Description

This open access book presents detailed pathways to achieve 100% renewable energy by 2050, globally and across ten geographical regions. Based on state-of-the-art scenario modelling, it provides the vital missing link between renewable energy targets and the measures needed to achieve them. Bringing together the latest research in climate science, renewable energy technology, employment and resource impacts, the book breaks new ground by covering all the elements essential to achieving the ambitious climate mitigation targets set out in the Paris Climate Agreement. For example, sectoral implementation pathways, with special emphasis on differences between developed and developing countries and regional conditions, provide tools to implement the scenarios globally and domestically. Non-energy greenhouse gas mitigation scenarios define a sustainable pathway for land-use change and the agricultural sector. Furthermore, results of the impact of the scenarios on employment and mineral and resource requirements provide vital insight on economic and resource management implications. The book clearly demonstrates that the goals of the Paris Agreement are achievable and feasible with current technology and are beneficial in economic and employment terms. It is essential reading for anyone with responsibility for implementing renewable energy or climate targets internationally or domestically, including climate policy negotiators, policy-makers at all levels of government, businesses with renewable energy commitments, researchers and the renewable energy industry. Part 2 of this title can be found at this Link: https://link.springer.com/book/10.1007/978-3-030-99177-7




Electricity from Renewable Resources


Book Description

A component in the America's Energy Future study, Electricity from Renewable Resources examines the technical potential for electric power generation with alternative sources such as wind, solar-photovoltaic, geothermal, solar-thermal, hydroelectric, and other renewable sources. The book focuses on those renewable sources that show the most promise for initial commercial deployment within 10 years and will lead to a substantial impact on the U.S. energy system. A quantitative characterization of technologies, this book lays out expectations of costs, performance, and impacts, as well as barriers and research and development needs. In addition to a principal focus on renewable energy technologies for power generation, the book addresses the challenges of incorporating such technologies into the power grid, as well as potential improvements in the national electricity grid that could enable better and more extensive utilization of wind, solar-thermal, solar photovoltaics, and other renewable technologies.




Solar Energy Update


Book Description




The Power of Renewables


Book Description

The United States and China are the world's top two energy consumers and, as of 2010, the two largest economies. Consequently, they have a decisive role to play in the world's clean energy future. Both countries are also motivated by related goals, namely diversified energy portfolios, job creation, energy security, and pollution reduction, making renewable energy development an important strategy with wide-ranging implications. Given the size of their energy markets, any substantial progress the two countries make in advancing use of renewable energy will provide global benefits, in terms of enhanced technological understanding, reduced costs through expanded deployment, and reduced greenhouse gas (GHG) emissions relative to conventional generation from fossil fuels. Within this context, the U.S. National Academies, in collaboration with the Chinese Academy of Sciences (CAS) and Chinese Academy of Engineering (CAE), reviewed renewable energy development and deployment in the two countries, to highlight prospects for collaboration across the research to deployment chain and to suggest strategies which would promote more rapid and economical attainment of renewable energy goals. Main findings and concerning renewable resource assessments, technology development, environmental impacts, market infrastructure, among others, are presented. Specific recommendations have been limited to those judged to be most likely to accelerate the pace of deployment, increase cost-competitiveness, or shape the future market for renewable energy. The recommendations presented here are also pragmatic and achievable.