Solar Collectors, Energy Storage, and Materials


Book Description

Solar Collectors, Energy Storage, and Materials covers the materials and basic components needed for solar thermal energy systems. Using thermal performance and durability as the major criteria, the twenty six chapters emphasize the modeling and assessment of devices rather than their application or cost. Each part begins with an overview and concludes with an assessment of current issues and opportunities. The contributors have been careful to document failures as well as successes in materials research. This is the fifth volume in a series that distills the results of the intensive research on and development of solar thermal energy conversion technologies from 1975 to 1986. Francis de Winter is President of the Altas Corporation, Santa Cruz, California and a member of the Santa Cruz Energy Advisory Committee. Contents: Solar Collectors. Collector Concepts and Designs. Optical Theory and Modeling of Solar Collectors. Thermal Theory and Modeling of Solar Collectors. Testing and Evaluation of Stationary Collectors. Testing and Evaluation of Tracking Collectors. Optical Research and Development. Collector Thermal Research and Development. Collector Engineering Research and Development. Solar Pond Research and Development. Reliability and Durability of Solar Collectors. Environmental Degradation of Low-Cost Solar Collectors. Energy Storage for Solar Systems. Storage Concepts and Design. Analytical and Numerical Modeling of Thermal Conversion Systems. Testing and Evaluation of Thermal Energy Storage Systems. Storage Research and Development. Materials for Solar Technologies. Materials for Solar Collector Concepts and Designs. Theory and Modeling of Solar Materials. Testing and Evaluation of Solar Materials. Exposure Testing and Evaluation of Performance Degradation. Solar Materials Research and Development.




Active Solar Collectors and Their Applications


Book Description

Provides a survey of solar geometry and meteorological data, the optics of various kinds of solar collectors, the mechanics of heat transfer, and private elements of system deign, optimization, and economic analysis. Also discussed are testing, methods and materials, and tracking and nontracking collectors.




Solar Thermal Collectors


Book Description




Solar Collectors


Book Description

This book is intended to provide an engineering point of view and the design tools for low temperature solar collectors, as well as their networks in large solar installations for the integration of solar energy in processing industries. To this end, the book covers the description of existing solar technology, performance enhancement techniques for single units, hydrodynamics and its influence on flow distribution inside tubes, its effect upon thermal efficiency and pressure drop profiles. A detailed graphical description of the thermo-hydraulic behavior using experimentally validated Computational Fluid Dynamics simulations are described. An important contribution is the introduction of the main concepts to design and specify the structure of solar collector networks based on the reconciliation of the thermal and hydraulic lengths. The thermal performance is analyzed as a function of the velocity of the fluid and its relation to the rate of heat transfer. Likewise, velocity is analyzed in connection to the pressure drop. This approach allows the engineer to determine the structure of a solar collector network, which is defined by two parameters: the number of parallel sets of collectors and the number of collectors per set to achieve the process thermal needs at the specified temperature within the limitations of the pressure drop. These tools are put forward within the frame of flexible plant operation.




Solar Engineering of Thermal Processes


Book Description

The updated, cornerstone engineering resource of solar energy theory and applications. Solar technologies already provide energy for heat, light, hot water, electricity, and cooling for homes, businesses, and industry. Because solar energy only accounts for one-tenth of a percent of primary energy demand, relatively small increases in market penetration can lead to very rapid growth rates in the industryâ??which is exactly what has been projected for coming years as the world moves away from carbon-based energy production. Solar Engineering of Thermal Processes, Third Edition provides the latest thinking and practices for engineering solar technologies and using them in various markets. This Third Edition of the acknowledged leading book on solar engineering features: Complete coverage of basic theory, systems design, and applications Updated material on such cutting-edge topics as photovoltaics and wind power systems New homework problems and exercises










Solar Energy


Book Description




Design of Solar Thermal Power Plants


Book Description

Design of Solar Thermal Power Plants introduces the basic design methods of solar thermal power plants for technicians engaged in solar thermal power generation engineering. This book includes the author's theoretical investigation and study findings in solar heat concentrators, a performance evaluation of solar thermal collectors, a numerical simulation of the heat transfer process between complex geometrics, heat transfer through radiation, and more. Containing theoretical descriptions of solar concentrators and receivers, practical engineering examples, and detailed descriptions of site selections for solar thermal power plants, this book has a strong theoretical and practical value for readers. - Contains practical guidance and applications, making it more useful and user-friendly for CSP engineers - Includes theoretical investigation in solar heat concentrators, performance evaluation of solar thermal collectors, and the numerical simulation of heat transfer between complex geometrics with practical applications




Solar Energy Engineering


Book Description

As perhaps the most promising of all the renewable energy sources available today, solar energy is becoming increasingly important in the drive to achieve energy independence and climate balance. This new book is the masterwork from world-renowned expert Dr. Soteris Kalogirou, who has championed solar energy for decades. The book includes all areas of solar energy engineering, from the fundamentals to the highest level of current research. The author includes pivotal subjects such as solar collectors, solar water heating, solar space heating and cooling, industrial process heat, solar desalination, photovoltaics, solar thermal power systems, and modeling of solar systems, including the use of artificial intelligence systems in solar energy systems, modeling and performance prediction. *Written by one of the world's most renowned experts in solar energy*Covers the hottest new developments in solar technology, such as solar cooling and desalination*Packed with quick look up tables and schematic diagrams for the most commonly used systems today'