Solid Acoustic Waves And Vibration: Theory And Applications


Book Description

Solid Acoustic Waves and Vibration: Theory and Applications is an exciting new book that takes readers inside a fascinating subject. It is charming that there is a complex and delicate structure in characteristic values, which is revealed by introducing a conceptual system including space operator, space-time variable, reference Poisson's ratio, etc., and developing the analytical models for all limiting cases. The dispersion curves of waves in an elastic plate are determined completely, and a systematic and concise description of the fundamental theory of this subject is given.As MEMS and NEMS technology develops, a number of new issues presents, such as the effects of residual stress, thin-film, air captured in micro-air-gaps and coating on the system, which make the problem complicated and spark debates. Micro-diaphragms are modeled by a plate in tension and mounted on air-spring, a general TDK equation of vibration of plates, including free, forced and damped vibrations, and its solutions are developed. The loading effect of coating is modeled by a mass load; a micro-load theory is presented. This book is a summary of the author's long-term research on electromechanical transducers and these related issues, and they provide an excellent description combining theory and application. The principle of electromechanical transducers, which achieve the conversion between mechanical and electrical energy, occupying a particularly important position in the field of robotics and intelligent machines, is elucidated by introducing the concepts of space-time operator, complex transformation factor, inversion impedance, etc., and an unfiled equivalent circuit is presented. The applications in micromachined capacitive ultrasonic transducers (mCUTs, CMUTs) for biomedical imaging and ultrasonic mass resonators (mUMRs) for biochemical sensing, including plate-type, beam-type, nanowire, bulk-wave, LAW and SAW delay-line ultrasonic resonators are described. This interdisciplinary book will be increasingly attractive as MEMS and NEMS technology develops.




Fundamentals of Noise and Vibration Analysis for Engineers


Book Description

Noise and Vibration affects all kinds of engineering structures, and is fast becoming an integral part of engineering courses at universities and colleges around the world. In this second edition, Michael Norton's classic text has been extensively updated to take into account recent developments in the field. Much of the new material has been provided by Denis Karczub, who joins Michael as second author for this edition. This book treats both noise and vibration in a single volume, with particular emphasis on wave-mode duality and interactions between sound waves and solid structures. There are numerous case studies, test cases, and examples for students to work through. The book is primarily intended as a textbook for senior level undergraduate and graduate courses, but is also a valuable reference for researchers and professionals looking to gain an overview of the field.




Principles of Vibration and Sound


Book Description

An ideal text for advanced undergraduates, the book provides the foundations needed to understand the acoustics of rooms and musical instruments as well as the basics for scientists and engineers interested in noise and vibration. The new edition contains four new chapters devoted primarily to applications of acoustical principles in everyday life: Microphones and Other Transducers, Sound in Concert Halls and Studios, Sound and Noise Outdoors; and Underwater Sound.




Springer Handbook of Acoustics


Book Description

This is an unparalleled modern handbook reflecting the richly interdisciplinary nature of acoustics edited by an acknowledged master in the field. The handbook reviews the most important areas of the subject, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest research and applications are incorporated throughout, including computer recognition and synthesis of speech, physiological acoustics, diagnostic imaging and therapeutic applications and acoustical oceanography. An accompanying CD-ROM contains audio and video files.




Discrete and Continuum Models for Complex Metamaterials


Book Description

Bringing together contributions on a diverse range of topics, this text explores the relationship between discrete and continuum mechanics as a tool to model new and complex metamaterials. Providing a comprehensive bibliography and historical review of the field, it covers mechanical, acoustic and pantographic metamaterials, discusses Naive Model Theory and Lagrangian discrete models, and their applications, and presents methods for pantographic structures and variational methods for multidisciplinary modeling and computation. The relationship between discrete and continuous models is discussed from both mathematical and engineering viewpoints, making the text ideal for those interested in the foundation of mechanics and computational applications, and innovative viewpoints on the use of discrete systems to model metamaterials are presented for those who want to go deeper into the field. An ideal text for graduate students and researchers interested in continuum approaches to the study of modern materials, in mechanical engineering, civil engineering, applied mathematics, physics, and materials science.




Handbook Of Contemporary Acoustics And Its Applications


Book Description

Modern acoustics has blossomed rapidly in the past decades. Beginning as a branch off from the classical physics, modern acoustics has become an interdisciplinary science that has exceeded the boundaries of its origins. As a result, the demand for graduate students, professionals and specialists who need to master the knowledge of acoustics is growing quickly. The primary goal of this publication is to meet this urgent need by providing an updated, comprehensive reference book that educates readers on both fundamental concepts as well as their broader applications in the fast-moving technological world. The Handbook of Contemporary Acoustics and Its Applications systematically covers the theoretical principle and analytical methodology of generation, propagation and reception of acoustic waves in an ideal (inviscid) and non-ideal fluid media. The topics include the transduction, radiation, scattering, diffraction and reception of the acoustic wave. It also discusses the acoustic field in a duct/pipe, waveguide and cavity, the wave propagation in the multi-layers, nonlinear finite amplitude wave propagation and the mechanisms of physical and biological effects and their broad modern applications such as sonoporation, targeted drug delivery, acoustic tweezers, noninvasive high intensity focused ultrasound (HIFU) surgery, as well as sonoluminscence. Readers are also provided with the fundamental mathematic background and relevant references necessary for their creative inventions and applications.This handbook is intended for senior undergraduate and graduate students, as well as specialists working in relevant fields, and may be used as a textbook in courses covering acoustics.




Surface Acoustic Waves in Inhomogeneous Media


Book Description

Surface Acoustic Waves in Inhomogeneous Media covers almost all important problems of the interaction of different types of surface acoustic waves with surface inhomogeneities. The problems of surface acoustic wave interaction with periodic topographic gratings widely used in filters and resonators are under careful consideration. The most important results of surface wave scattering by local defects such as grooves, random roughness, elastic wedges are given. Different theoretical approaches and practical rules for solving the surface wave problems are presented.




The Science and Applications of Acoustics


Book Description

This textbook treats the broad range of modern acoustics from the basics of wave propagation in solids and fluids to applications such as noise control and cancellation, underwater acoustics, music and music synthesis, sonoluminescence, and medical diagnostics with ultrasound. The new edition is up-to-date and forward-looking in approach. Additional coverage of the opto-acoustics and sonoluminescence phenomena is included. New problems have been added throughout.







Wave Motion in Elastic Solids


Book Description

Self-contained coverage of topics ranging from elementary theory of waves and vibrations in strings to three-dimensional theory of waves in thick plates. Over 100 problems.