Mechanics of Solids and Fluids


Book Description

This book offers a unified presentation of the concepts and most of the practicable principles common to all branches of solid and fluid should be appealing to advanced undergraduate mechanics. Its design students in engineering science and should also enhance the insight of both graduate students and practitioners. A profound knowledge of applied mechanics as understood in this book may help to cultivate the versatility that the engineering community must possess in this modern world of high-technology. This book is, in fact, a reviewed and extensively improved second edition, but it can also be regarded as the first edition in English, translated by the author himself from the original German version, "Technische Mechanik der festen und flOssigen Korper," published by Springer-Verlag, Wien, in 1985. Although this book grew out of lecture notes for a three semester course for advanced undergraduate students taught by the author and several colleagues during the past 20 years, it contains sufficient material for a subsequent two-semester graduate course. The only prerequisites are basic algebra and analysis as usually taught in the first year of an undergraduate engineering curriculum. Advanced mathematics as it is required in the progress of mechanics teaching may be taught in parallel classes, but also an introduction into the art of design should be offered at that stage.




Computational Fluid and Solid Mechanics 2003


Book Description

Bringing together the world's leading researchers and practitioners of computational mechanics, these new volumes meet and build on the eight key challenges for research and development in computational mechanics. Researchers have recently identified eight critical research tasks facing the field of computational mechanics. These tasks have come about because it appears possible to reach a new level of mathematical modelling and numerical solution that will lead to a much deeper understanding of nature and to great improvements in engineering design.The eight tasks are: The automatic solution of mathematical models Effective numerical schemes for fluid flows The development of an effective mesh-free numerical solution method The development of numerical procedures for multiphysics problems The development of numerical procedures for multiscale problems The modelling of uncertainties The analysis of complete life cycles of systems Education - teaching sound engineering and scientific judgement Readers of Computational Fluid and Solid Mechanics 2003 will be able to apply the combined experience of many of the world's leading researchers to their own research needs. Those in academic environments will gain a better insight into the needs and constraints of the industries they are involved with; those in industry will gain a competitive advantage by gaining insight into the cutting edge research being carried out by colleagues in academia. Features Bridges the gap between academic researchers and practitioners in industry Outlines the eight main challenges facing Research and Design in Computational mechanics and offers new insights into the shifting the research agenda Provides a vision of how strong, basic and exciting education at university can be harmonized with life-long learning to obtain maximum value from the new powerful tools of analysis




Solid and Fluid Mechanics


Book Description




Variational Models and Methods in Solid and Fluid Mechanics


Book Description

F. dell'Isola, L. Placidi: Variational principles are a powerful tool also for formulating field theories. - F. dell'Isola, P. Seppecher, A. Madeo: Beyond Euler-Cauchy Continua. The structure of contact actions in N-th gradient generalized continua: a generalization of the Cauchy tetrahedron argument. - B. Bourdin, G.A. Francfort: Fracture. - S. Gavrilyuk: Multiphase flow modeling via Hamilton's principle. - V. L. Berdichevsky: Introduction to stochastic variational problems. - A. Carcaterra: New concepts in damping generation and control: theoretical formulation and industrial applications. - F. dell'Isola, P. Seppecher, A. Madeo: Fluid shock wave generation at solid-material discontinuity surfaces in porous media. Variational methods give an efficient and elegant way to formulate and solve mathematical problems that are of interest to scientists and engineers. In this book three fundamental aspects of the variational formulation of mechanics will be presented: physical, mathematical and applicative ones. The first aspect concerns the investigation of the nature of real physical problems with the aim of finding the best variational formulation suitable to those problems. The second aspect is the study of the well-posedeness of those mathematical problems which need to be solved in order to draw previsions from the formulated models. And the third aspect is related to the direct application of variational analysis to solve real engineering problems.




Advances in Fluid Mechanics and Solid Mechanics


Book Description

This book comprises select proceedings of the 63rd Congress of the Indian Society of Theoretical and Applied Mechanics (ISTAM) held in Bangalore, in December 2018. Latest research in computational, experimental, and applied mechanics is presented in the book. The chapters are broadly classified into two sections - (i) fluid mechanics and (ii) solid mechanics. Each section covers computational and experimental studies on various contemporary topics such as aerospace dynamics and propulsion, atmospheric sciences, boundary layers, compressible flow, environmental fluid dynamics, control structures, fracture and crack, viscoelasticity, and mechanics of composites. The contents of this book will serve as a useful reference to students, researchers, and practitioners interested in the broad field of mechanics.




Fluid And Solid Mechanics


Book Description

This book leads readers from a basic foundation to an advanced-level understanding of fluid and solid mechanics. Perfect for graduate or PhD mathematical-science students looking for help in understanding the fundamentals of the topic, it also explores more specific areas such as multi-deck theory, time-mean turbulent shear flows, non-linear free surface flows, and internal fluid dynamics.Fluid and Solid Mechanics is the second volume of the LTCC Advanced Mathematics Series. This series is the first to provide advanced introductions to mathematical science topics to advanced students of mathematics. Edited by the three joint heads of the London Taught Course Centre for PhD Students in the Mathematical Sciences (LTCC), each book supports readers in broadening their mathematical knowledge outside of their immediate research disciplines while also covering specialized key areas.




Mechanics of Solids and Fluids


Book Description

from reviews of the first edition "This book is a comprehensive treatise... with a significant application to structural mechanics_ the author has provided sufficient applications of the theoretical principles_ such a connection between theory and application is a common theme and quite an attractive feature._ The book is a unique volume which contains information not easily found throughout the related literature." _ APPL. MECH. REV. This text, suitable for courses on fluid and solid mechanics, continuum mechanics, and strength of materials, offers a unified presentation of the theories and practical principles common to all branches of solid and fluid mechanics. For the student, each chapter proceeds from basic material to advanced topics usually covered at the graduate level. The presentation is self -contained, the only prerequisites are the basic algebra and analysis that are usually taught in the first and second years of an undergraduate engineering curriculum. Extensive problem sets, new in this edition, make the text more useful than before. For the practicing engineer, Mechanics of Solids and Fluids provides an up-to-date synopsis of the principles of solid and fluid mechanics combined with illustrative examples. The conservation laws for mass, momentum and energy are considered for both material and control volumes. The discussion of elastostatics includes thermal stress analysis and is extended to linear viscoelasticity by means of the correspondence principle. The Ritz-




Applied Solid Mechanics


Book Description

Emphasises the power of mathematics to provide quantitative insights across the whole area of solid mechanics; accessible and comprehensive.




Advances in Fluid Mechanics and Solid Mechanics


Book Description

This book comprises select proceedings of the 63rd Congress of the Indian Society of Theoretical and Applied Mechanics (ISTAM) held in Bangalore, in December 2018. Latest research in computational, experimental, and applied mechanics is presented in the book. The chapters are broadly classified into two sections - (i) fluid mechanics and (ii) solid mechanics. Each section covers computational and experimental studies on various contemporary topics such as aerospace dynamics and propulsion, atmospheric sciences, boundary layers, compressible flow, environmental fluid dynamics, control structures, fracture and crack, viscoelasticity, and mechanics of composites. The contents of this book will serve as a useful reference to students, researchers, and practitioners interested in the broad field of mechanics.




Modern Fluid Dynamics


Book Description

This textbook covers essentials of traditional and modern fluid dynamics, i. e. , the fundamentals of and basic applications in fluid mechanics and convection heat transfer with brief excursions into fluid-particle dynamics and solid mechanics. Specifically, it is suggested that the book can be used to enhance the knowledge base and skill level of engineering and physics students in macro-scale fluid mechanics (see Chaps. 1–5 and 10), followed by an int- ductory excursion into micro-scale fluid dynamics (see Chaps. 6 to 9). These ten chapters are rather self-contained, i. e. , most of the material of Chaps. 1–10 (or selectively just certain chapters) could be taught in one course, based on the students’ background. Typically, serious seniors and first-year graduate students form a receptive audience (see sample syllabus). Such as target group of students would have had prerequisites in thermodynamics, fluid mechanics and solid mechanics, where Part A would be a welcomed refresher. While introductory fluid mechanics books present the material in progressive order, i. e. , employing an inductive approach from the simple to the more difficult, the present text adopts more of a deductive approach. Indeed, understanding the derivation of the basic equations and then formulating the system-specific equations with suitable boundary conditions are two key steps for proper problem solutions.