Solid State Electronic Devices, Global Edition


Book Description

For undergraduate electrical engineering students or for practicing engineers and scientists interested in updating their understanding of modern electronics One of the most widely used introductory books on semiconductor materials, physics, devices and technology, Solid State Electronic Devices aims to: 1) develop basic semiconductor physics concepts, so students can better understand current and future devices; and 2) provide a sound understanding of current semiconductor devices and technology, so that their applications to electronic and optoelectronic circuits and systems can be appreciated. Students are brought to a level of understanding that will enable them to read much of the current literature on new devices and applications. Teaching and Learning Experience This program will provide a better teaching and learning experience–for you and your students. It will help: Provide a Sound Understanding of Current Semiconductor Devices: With this background, students will be able to see how their applications to electronic and optoelectronic circuits and systems are meaningful. Incorporate the Basics of Semiconductor Materials and Conduction Processes in Solids: Most of the commonly used semiconductor terms and concepts are introduced and related to a broad range of devices. Develop Basic Semiconductor Physics Concepts: With this background, students will be better able to understand current and future devices.




Fundamentals of Solid-state Electronics


Book Description

This Solution Manual, a companion volume of the book, Fundamentals of Solid-State Electronics, provides the solutions to selected problems listed in the book. Most of the solutions are for the selected problems that had been assigned to the engineering undergraduate students who were taking an introductory device core course using this book.This Solution Manual also contains an extensive appendix which illustrates the application of the fundamentals to solutions of state-of-the-art transistor reliability problems which have been taught to advanced undergraduate and graduate students.




Solid State Electronic Devices


Book Description




Industrial Solid-state Electronics


Book Description




Fundamentals of Solid State Engineering


Book Description

Provides a multidisciplinary introduction to quantum mechanics, solid state physics, advanced devices, and fabrication Covers wide range of topics in the same style and in the same notation Most up to date developments in semiconductor physics and nano-engineering Mathematical derivations are carried through in detail with emphasis on clarity Timely application areas such as biophotonics , bioelectronics




Microelectronic Circuits


Book Description

Microelectronic Circuits by Sedra and Smith has served generations of electrical and computer engineering students as the best and most widely-used text for this required course. Respected equally as a textbook and reference, "Sedra/Smith" combines a thorough presentation of fundamentals with an introduction to present-day IC technology. It remains the best text for helping students progress from circuit analysis to circuit design, developing design skills and insights that are essential to successful practice in the field. Significantly revised with the input of two new coauthors, slimmed down, and updated with the latest innovations, Microelectronic Circuits, Eighth Edition, remains the gold standard in providing the most comprehensive, flexible, accurate, and design-oriented treatment of electronic circuits available today.




Noise in Solid State Devices and Circuits


Book Description

Gives basic and up-to-date information about noise sources in electronic devices. Demonstrates how this information can be used to calculate the noise performance, in particular the noise figure, of electronic circuits using these devices. Optimization procedures, both for the circuits and for the devices, are then devised based on these data. Gives an elementary treatment of thermal noise, diffusion noise, and velocity-fluctuation noise, including quantum effects in thermal noise and maser noise.




The Physics and Modeling of Mosfets


Book Description

This volume provides a timely description of the latest compact MOS transistor models for circuit simulation. The first generation BSIM3 and BSIM4 models that have dominated circuit simulation in the last decade are no longer capable of characterizing all the important features of modern sub-100nm MOS transistors. This book discusses the second generation MOS transistor models that are now in urgent demand and being brought into the initial phase of manufacturing applications. It considers how the models are to include the complete drift-diffusion theory using the surface potential variable in the MOS transistor channel in order to give one characterization equation.




Solid State Physics and Electronics


Book Description

The present edition is brought up to incorporate the useful suggestions from a number of readers and teachers for the benefit of students.A topic on common-collector configuration is added to the chapter XIII.A new chapter on logic gates is intriduced at the end.Keeping in view the present style of university Question papers,a number of very short,short and long thoroughly revised and corrected to remove the errors which crept into earlier editions.




Advanced High Speed Devices


Book Description

Advanced High Speed Devices covers five areas of advanced device technology: terahertz and high speed electronics, ultraviolet emitters and detectors, advanced III-V field effect transistors, III-N materials and devices, and SiC devices. These emerging areas have attracted a lot of attention and the up-to-date results presented in the book will be of interest to most device and electronics engineers and scientists. The contributors range from prominent academics, such as Professor Lester Eastman, to key US Government scientists, such as Dr Michael Wraback.