Solid State Ionic Devices 6 – Nano Ionics


Book Description

Solid-state electrochemical devices, such as batteries, fuel cells, membranes, and sensors, are critical components of technologically advanced societies in the 21st Century and beyond. The development of these devices involves common research themes such as ion transport, interfacial phenomena, and device design and performance, regardless of the class of materials or whether the solid state is amorphous or crystalline. The intent of this international symposia series is to provide a forum for recent advances in solid-state ion conducting materials and the design, fabrication, and performance of devices that utilize them. The papers in this issue of ECS Transactions were presented at the 6th Solid State Ionic Devices symposium, at the 214th meeting of The Electrochemical Society, October 12-17, 2008 in Honolulu, Hawaii.




Introduction to Solid State Ionics


Book Description

Introduction to Solid State Ionics: Phenomenology and Applications presents a pedagogical, graduate-level treatment of the science and technology of superionic conductors, also known as fast ion conductors or solid electrolytes. Suitable for physics, materials science, and engineering researchers and students, the text emphasizes basic physics and




Physical Chemistry of Ionic Materials


Book Description

Defects play an important role in determining the properties of solids. This book provides an introduction to chemical bond, phonons, and thermodynamics; treatment of point defect formation and reaction, equilibria, mechanisms, and kinetics; kinetics chapters on solid state processes; and electrochemical techniques and applications. * Offers a coherent description of fundamental defect chemistry and the most common applications. * Up-to-date trends and developments within this field. * Combines electrochemical concepts with aspects of semiconductor physics.




Solid-state Ionic Devices II


Book Description




Solid-state Ionic Devices


Book Description




Fast Ion Transport in Solids


Book Description

The main motivation for the organization of the Advanced Research Workshop in Belgirate was the promotion of discussions on the most recent issues and the future perspectives in the field of Solid State lonics. The location was chosen on purpose since Belgirate was the place were twenty years ago, also then under the sponsorship of NATO, the very first international meeting on this important and interdisciplinary field took place. That meeting was named "Fast Ion Transport in Solids" and gathered virtually everybody at that time having been active in any aspect of motion of ions in solids. The original Belgirate Meeting made for the first time visible the technological potential related to the phenomenon of the fast ionic transport in solids and, accordingly, the field was given the name "Solid State lonics". This field is now expanded to cover a wide range of technologies which includes chemical sensors for environmental and process control, electrochromic windows, mirrors and displays, fuel cells, high performance rechargeable batteries for stationary applications and electrotraction, chemotronics, semiconductor ionics, water electrolysis cells for hydrogen economy and other applications. The main idea for holding an anniversary meeting was that of discussing the most recent issues and the future perspectives of Solid State lonics just twenty years after it has started at the same location on the lake Maggiore in North Italy.




Solid-state Ionic Devices II


Book Description




Physical Chemistry of Ionic Materials


Book Description

Discover the physical chemistry of charge carriers in the second edition of this popular textbook Ionic and electronic charge carriers are critical to the kinetic and electrochemical properties of ionic solids. These charge carriers are point defects and are decisive for electrical conductivity, mass transport, and storage phenomena. Generally, defects are deviations from the perfect structure, and if higher-dimensional, also crucial for the mechanical properties. The study of materials science and energy research therefore requires a thorough understanding of defects, in particular the charged point defects, their mobilities, and formation mechanisms. Physical Chemistry of Ionic Materials is a comprehensive introduction to these charge carrier particles and the processes that produce, move, and activate them. Covering both core principles and practical applications, it discusses subjects ranging from chemical bonding and thermodynamics to solid-state kinetics and electrochemical techniques. Now in an updated edition with numerous added features, it promises to be the essential textbook on this subject for a new generation of materials scientists. Readers of the 2nd Edition of Physical Chemistry of Ionic Materials will also find: Two new chapters on solid state electrochemistry and another on nanoionics Novel brief sections on photoelectrochemistry, bioelectrochemistry, and atomistic modelling put the treatment into a broader context Discussion of the working principles required to understand electrochemical devices like sensors, batteries, and fuel cells Real laboratory measurements to ground basic principles in practical experimentation Physical Chemistry of Ionic Materials is a valuable reference for chemists, physicists, and any working researchers or advanced students in the materials sciences.




Metal Oxide-Based Thin Film Structures


Book Description

Metal Oxide-Based Thin Film Structures: Formation, Characterization and Application of Interface-Based Phenomena bridges the gap between thin film deposition and device development by exploring the synthesis, properties and applications of thin film interfaces. Part I deals with theoretical and experimental aspects of epitaxial growth, the structure and morphology of oxide-metal interfaces deposited with different deposition techniques and new developments in growth methods. Part II concerns analysis techniques for the electrical, optical, magnetic and structural properties of thin film interfaces. In Part III, the emphasis is on ionic and electronic transport at the interfaces of Metal-oxide thin films. Part IV discusses methods for tailoring metal oxide thin film interfaces for specific applications, including microelectronics, communication, optical electronics, catalysis, and energy generation and conservation. This book is an essential resource for anyone seeking to further their knowledge of metal oxide thin films and interfaces, including scientists and engineers working on electronic devices and energy systems and those engaged in research into electronic materials. - Introduces the theoretical and experimental aspects of epitaxial growth for the benefit of readers new to the field - Explores state-of-the-art analysis techniques and their application to interface properties in order to give a fuller understanding of the relationship between macroscopic properties and atomic-scale manipulation - Discusses techniques for tailoring thin film interfaces for specific applications, including information, electronics and energy technologies, making this book essential reading for materials scientists and engineers alike




Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications


Book Description

This book discusses the fundamental, synthesis, properties, physico-chemical characterizations and applications of recently explored nanocomposite materials. It covers the applications of these different nanocomposite materials in the environmental and energy harvesting fields. The chapters explore the different techniques used for preparation and characterization of several types of nanocomposite materials for applications related to environmental and energy pathways. This book presents a panorama of current research in the field of nanocomposite structures for different applications. It also assesses the advantages and disadvantages of using different types of nanocomposite in the design of different material products. The comprehensive chapters explain the interactions between nanocomposite materials and mechanisms related to applications in environmental pollution and energy shortage.