Solid-State Microwave Amplifier Design


Book Description

A comprehensive treatment of microwave radio-frequency amplifier design, using solid-state devices such as GaAs FEETs, microwave bipolar transistors, IMPATT and Gunn diodes. Emphasis is on low-noise, high-gain and high-power transistor amplifiers for both wideband and narrowband applications, using scattering parameters as design tools. Includes computer simulation results of amplifier performance in design examples, problems and an extensive bibliography.




High Efficiency RF and Microwave Solid State Power Amplifiers


Book Description

Do you want to know how to design high efficiency RF and microwave solid state power amplifiers? Read this book to learn the main concepts that are fundamental for optimum amplifier design. Practical design techniques are set out, stating the pros and cons for each method presented in this text. In addition to novel theoretical discussion and workable guidelines, you will find helpful running examples and case studies that demonstrate the key issues involved in power amplifier (PA) design flow. Highlights include: Clarification of topics which are often misunderstood and misused, such as bias classes and PA nomenclatures. The consideration of both hybrid and monolithic microwave integrated circuits (MMICs). Discussions of switch-mode and current-mode PA design approaches and an explanation of the differences. Coverage of the linearity issue in PA design at circuit level, with advice on low distortion power stages. Analysis of the hot topic of Doherty amplifier design, plus a description of advanced techniques based on multi-way and multi-stage architecture solutions. High Efficiency RF and Microwave Solid State Power Amplifiers is: an ideal tutorial for MSc and postgraduate students taking courses in microwave electronics and solid state circuit/device design; a useful reference text for practising electronic engineers and researchers in the field of PA design and microwave and RF engineering. With its unique unified vision of solid state amplifiers, you won’t find a more comprehensive publication on the topic.




Solid-state Microwave High-power Amplifiers


Book Description

This practical resource offers expert guidance on the most critical aspects of microwave power amplifier design. This comprehensive book provides descriptions of all the major active devices, discusses large signal characterization, explains all the key circuit design procedures. Moreover you gain keen insight on the link between design parameters and technological implementation, helping you achieve optimal solutions with the most efficient utilization of available technologies. The book covers a broad range of essential topics, from requirements for high-power amplifiers, device models, phase noise and power combiners... to high-efficiency amplifiers, linear amplifier design, bias circuits, and thermal design.




Microwave Power Amplifier Design with MMIC Modules


Book Description

Solid state power amplifiers (SSPA) are a critical part of many microwave systems. Designing SSPAs with monolithic microwave integrated circuits (MMIC) has boosted device performance to much higher levels focused on PA modules. This cutting-edge book offers engineers practical guidance in selecting the best power amplifier module for a particular application and interfacing the selected module with other power amplifier modules in the system. It also explains how to identify and mitigate peripheral issues concerning the PA modules, SSPAs, and microwave systems. This authoritative volume presents the critical techniques and underpinnings of SSPA design, enabling professionals to optimize device and system performance. Engineers gain the knowledge they need to evaluate the optimum topologies for the design of a chain of microwave devices, including power amplifiers. Additionally, the book addresses the interface between the microwave subsystems and the primary DC power, the control and monitoring circuits, and the thermal and EMI paths. Packed with 240 illustrations and over 430 equations, this detailed book provides the practical tools engineers need for their challenging projects in the field.




RF and Microwave Power Amplifier Design


Book Description

This is a rigorous tutorial on radio frequency and microwave power amplifier design, teaching the circuit design techniques that form the microelectronic backbones of modern wireless communications systems. Suitable for self-study, corporate training, or Senior/Graduate classroom use, the book combines analytical calculations and computer-aided design techniques to arm electronic engineers with every possible method to improve their designs and shorten their design time cycles.




Handbook of RF and Microwave Power Amplifiers


Book Description

This is a one-stop guide for circuit designers and system/device engineers, covering everything from CAD to reliability.




Design of RF and Microwave Amplifiers and Oscillators


Book Description

This newly revised edition offers a comprehensive and current treatment of the subject and includes expanded derivations and problem sets, helping to make the material even more accessible and easier to master.




Broadband RF and Microwave Amplifiers


Book Description

Broadband RF and Microwave Amplifiers provides extensive coverage of broadband radio frequency (RF) and microwave power amplifier design, including well-known historical and recent novel schematic configurations, theoretical approaches, circuit simulation results, and practical implementation strategies. The text begins by introducing two-port networks to illustrate the behavior of linear and nonlinear circuits, explaining the basic principles of power amplifier design, and discussing impedance matching and broadband power amplifier design using lumped and distributed parameters. The book then: Shows how dissipative or lossy gain-compensation-matching circuits can offer an important trade-off between power gain, reflection coefficient, and operating frequency bandwidth Describes the design of broadband RF and microwave amplifiers using real frequency techniques (RFTs), supplying numerous examples based on the MATLAB® programming process Examines Class-E power amplifiers, Doherty amplifiers, low-noise amplifiers, microwave gallium arsenide field-effect transistor (GaAs FET)-distributed amplifiers, and complementary metal-oxide semiconductor (CMOS) amplifiers for ultra-wideband (UWB) applications Broadband RF and Microwave Amplifiers combines theoretical analysis with practical design to create a solid foundation for innovative ideas and circuit design techniques.




Fundamentals of RF and Microwave Transistor Amplifiers


Book Description

A Comprehensive and Up-to-Date Treatment of RF and Microwave Transistor Amplifiers This book provides state-of-the-art coverage of RF and microwave transistor amplifiers, including low-noise, narrowband, broadband, linear, high-power, high-efficiency, and high-voltage. Topics covered include modeling, analysis, design, packaging, and thermal and fabrication considerations. Through a unique integration of theory and practice, readers will learn to solve amplifier-related design problems ranging from matching networks to biasing and stability. More than 240 problems are included to help readers test their basic amplifier and circuit design skills-and more than half of the problems feature fully worked-out solutions. With an emphasis on theory, design, and everyday applications, this book is geared toward students, teachers, scientists, and practicing engineers who are interested in broadening their knowledge of RF and microwave transistor amplifier circuit design.




Microwave Circuit Design Using Linear and Nonlinear Techniques


Book Description

The ultimate handbook on microwave circuit design with CAD. Full of tips and insights from seasoned industry veterans, Microwave Circuit Design offers practical, proven advice on improving the design quality of microwave passive and active circuits-while cutting costs and time. Covering all levels of microwave circuit design from the elementary to the very advanced, the book systematically presents computer-aided methods for linear and nonlinear designs used in the design and manufacture of microwave amplifiers, oscillators, and mixers. Using the newest CAD tools, the book shows how to design transistor and diode circuits, and also details CAD's usefulness in microwave integrated circuit (MIC) and monolithic microwave integrated circuit (MMIC) technology. Applications of nonlinear SPICE programs, now available for microwave CAD, are described. State-of-the-art coverage includes microwave transistors (HEMTs, MODFETs, MESFETs, HBTs, and more), high-power amplifier design, oscillator design including feedback topologies, phase noise and examples, and more. The techniques presented are illustrated with several MMIC designs, including a wideband amplifier, a low-noise amplifier, and an MMIC mixer. This unique, one-stop handbook also features a major case study of an actual anticollision radar transceiver, which is compared in detail against CAD predictions; examples of actual circuit designs with photographs of completed circuits; and tables of design formulae.