Solution of the Two-point Boundary Value Problems of Optimal Spacecraft Rotational Maneuvers


Book Description

"Numerical schemes for the solution of two-point boundary value problems arising from the application of optimal control theory to mathematical models of dynamic systems, are discussed. Optimal control problems are formulated for rotational maneuvers of multiple rigid body, asymmetric spacecraft configurations with both external torques and/or internal torques. Necessary conditions for optimality are derived through Pontryagin's principle; solutions to the problems are obtained numerically. Comparison studies using competing numerical methods and various choices of performance indices are reported"--Abstract.




Optimal Spacecraft Rotational Maneuvers


Book Description

This monograph has grown out of the authors' recent work directed toward solving a family of problems which arise in maneuvering modern spacecraft. The work ranges from fundamental developments in analytical dynamics and optimal control to a significant collection of example applications. The primary emphasis herein is upon the most central analytical and numerical methods for determining optimal rotational maneuvers of spacecraft. The authors focus especially upon the large angle nonlinear maneuvers, and also consider large rotational maneuvers of flexible vehicles with simultaneous vibration suppression/arrest. Each chapter includes a list of references.The book provides much new material which will be of great interest to practising professionals and advanced graduate students working in the general areas of spacecraft technology, applied mathematics, optimal control theory, and numerical optimization. Chapter 11 in particular presents new information that will be found widely useful for terminal control and tracking maneuvers.




Advanced Control of Aircraft, Spacecraft and Rockets


Book Description

Advanced Control of Aircraft, Spacecraft and Rockets introduces the reader to the concepts of modern control theory applied to the design and analysis of general flight control systems in a concise and mathematically rigorous style. It presents a comprehensive treatment of both atmospheric and space flight control systems including aircraft, rockets (missiles and launch vehicles), entry vehicles and spacecraft (both orbital and attitude control). The broad coverage of topics emphasizes the synergies among the various flight control systems and attempts to show their evolution from the same set of physical principles as well as their design and analysis by similar mathematical tools. In addition, this book presents state-of-art control system design methods - including multivariable, optimal, robust, digital and nonlinear strategies - as applied to modern flight control systems. Advanced Control of Aircraft, Spacecraft and Rockets features worked examples and problems at the end of each chapter as well as a number of MATLAB / Simulink examples housed on an accompanying website at http://home.iitk.ac.in/~ashtew that are realistic and representative of the state-of-the-art in flight control.




Proceedings


Book Description







Space Station Systems


Book Description




Proceedings


Book Description







Spaceflight Mechanics 1993


Book Description