Solution Techniques for Elementary Partial Differential Equations


Book Description

Incorporating a number of enhancements, Solution Techniques for Elementary Partial Differential Equations, Second Edition presents some of the most important and widely used methods for solving partial differential equations (PDEs). The techniques covered include separation of variables, method of characteristics, eigenfunction expansion, Fourier and Laplace transformations, Green’s functions, perturbation methods, and asymptotic analysis. New to the Second Edition New sections on Cauchy–Euler equations, Bessel functions, Legendre polynomials, and spherical harmonics A new chapter on complex variable methods and systems of PDEs Additional mathematical models based on PDEs Examples that show how the methods of separation of variables and eigenfunction expansion work for equations other than heat, wave, and Laplace Supplementary applications of Fourier transformations The application of the method of characteristics to more general hyperbolic equations Expanded tables of Fourier and Laplace transforms in the appendix Many more examples and nearly four times as many exercises This edition continues to provide a streamlined, direct approach to developing students’ competence in solving PDEs. It offers concise, easily understood explanations and worked examples that enable students to see the techniques in action. Available for qualifying instructors, the accompanying solutions manual includes full solutions to the exercises. Instructors can obtain a set of template questions for test/exam papers as well as computer-linked projector files directly from the author.




Partial Differential Equations


Book Description

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.




Solution Techniques for Elementary Partial Differential Equations


Book Description

"In my opinion, this is quite simply the best book of its kind that I have seen thus far." —Professor Peter Schiavone, University of Alberta, from the Foreword to the Fourth Edition Praise for the previous editions An ideal tool for students taking a first course in PDEs, as well as for the lecturers who teach such courses." —Marian Aron, Plymouth University, UK "This is one of the best books on elementary PDEs this reviewer has read so far. Highly recommended." —CHOICE Solution Techniques for Elementary Partial Differential Equations, Fourth Edition remains a top choice for a standard, undergraduate-level course on partial differential equations (PDEs). It provides a streamlined, direct approach to developing students’ competence in solving PDEs, and offers concise, easily understood explanations and worked examples that enable students to see the techniques in action. New to the Fourth Edition Two additional sections A larger number and variety of worked examples and exercises A companion pdf file containing more detailed worked examples to supplement those in the book, which can be used in the classroom and as an aid to online teaching







Introduction To Partial Differential Equations (With Maple), An: A Concise Course


Book Description

The book is designed for undergraduate or beginning level graduate students, and students from interdisciplinary areas including engineers, and others who need to use partial differential equations, Fourier series, Fourier and Laplace transforms. The prerequisite is a basic knowledge of calculus, linear algebra, and ordinary differential equations.The textbook aims to be practical, elementary, and reasonably rigorous; the book is concise in that it describes fundamental solution techniques for first order, second order, linear partial differential equations for general solutions, fundamental solutions, solution to Cauchy (initial value) problems, and boundary value problems for different PDEs in one and two dimensions, and different coordinates systems. Analytic solutions to boundary value problems are based on Sturm-Liouville eigenvalue problems and series solutions.The book is accompanied with enough well tested Maple files and some Matlab codes that are available online. The use of Maple makes the complicated series solution simple, interactive, and visible. These features distinguish the book from other textbooks available in the related area.




Introduction to Partial Differential Equations


Book Description

Combining both the classical theory and numerical techniques for partial differential equations, this thoroughly modern approach shows the significance of computations in PDEs and illustrates the strong interaction between mathematical theory and the development of numerical methods. Great care has been taken throughout the book to seek a sound balance between these techniques. The authors present the material at an easy pace and exercises ranging from the straightforward to the challenging have been included. In addition there are some "projects" suggested, either to refresh the students memory of results needed in this course, or to extend the theories developed in the text. Suitable for undergraduate and graduate students in mathematics and engineering.




Methods for Constructing Exact Solutions of Partial Differential Equations


Book Description

Differential equations, especially nonlinear, present the most effective way for describing complex physical processes. Methods for constructing exact solutions of differential equations play an important role in applied mathematics and mechanics. This book aims to provide scientists, engineers and students with an easy-to-follow, but comprehensive, description of the methods for constructing exact solutions of differential equations.




Introduction to Partial Differential Equations


Book Description

This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solutions, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements.




Finite Difference Methods for Ordinary and Partial Differential Equations


Book Description

This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.




Partial Differential Equations


Book Description

An accessible yet rigorous introduction to partial differential equations This textbook provides beginning graduate students and advanced undergraduates with an accessible introduction to the rich subject of partial differential equations (PDEs). It presents a rigorous and clear explanation of the more elementary theoretical aspects of PDEs, while also drawing connections to deeper analysis and applications. The book serves as a needed bridge between basic undergraduate texts and more advanced books that require a significant background in functional analysis. Topics include first order equations and the method of characteristics, second order linear equations, wave and heat equations, Laplace and Poisson equations, and separation of variables. The book also covers fundamental solutions, Green's functions and distributions, beginning functional analysis applied to elliptic PDEs, traveling wave solutions of selected parabolic PDEs, and scalar conservation laws and systems of hyperbolic PDEs. Provides an accessible yet rigorous introduction to partial differential equations Draws connections to advanced topics in analysis Covers applications to continuum mechanics An electronic solutions manual is available only to professors An online illustration package is available to professors