Solved Practical Problems in Fluid Mechanics


Book Description

Contains Fluid Flow Topics Relevant to Every EngineerBased on the principle that many students learn more effectively by using solved problems, Solved Practical Problems in Fluid Mechanics presents a series of worked examples relating fluid flow concepts to a range of engineering applications. This text integrates simple mathematical approaches tha




Solving Practical Engineering Mechanics Problems


Book Description

Fluid Mechanics is the study of liquid or gas behavior in motion or at rest. It is one of the fundamental branches of Engineering Mechanics, which is important to educate professional engineers of any major. Many of the engineering disciplines apply Fluid Mechanics principles and concepts. In order to absorb the materials of Fluid Mechanics, it is not enough just to consume theoretical laws and theorems. A student also must develop an ability to solve practical problems. Therefore, it is necessary to solve many problems independently. This book is a supplement to the Fluid Mechanics course in learning and applying the principles required to solve practical engineering problems in the following branches of Fluid Mechanics: Hydrostatics, Fluid Kinematics, Fluid Dynamics, Turbulent Flow and Gas Dynamics (Compressible Fluid Flow). This book contains practical problems in Fluid Mechanics, which are a complement to Fluid Mechanics textbooks. The book is the product of material covered in many classes over a period of four decades at several universities. It consists of 18 sets of problems where students are introduced to various topics of the Fluid Mechanics. Each set involves 30 problems, which can be assigned as individual homework as well as test/exam problems. The solution of a similar problem for each set is provided. The sequence of the topics and some of the problems were adopted from Fluid Mechanics by R. C. Hibbeler, 2nd edition, 2018, Pearson.




Fluid Mechanics


Book Description

This successful textbook emphasizes the unified nature of all the disciplines of Fluid Mechanics as they emerge from the general principles of continuum mechanics. The different branches of Fluid Mechanics, always originating from simplifying assumptions, are developed according to the basic rule: from the general to the specific. The first part of the book contains a concise but readable introduction into kinematics and the formulation of the laws of mechanics and thermodynamics. The second part consists of the methodical application of these principles to technology. In addition, sections about thin-film flow and flow through porous media are included.







Fluid Mechanics


Book Description

This collection of over 200 detailed worked exercises adds to and complements the textbook "Fluid Mechanics" by the same author, and, at the same time, illustrates the teaching material via examples. The exercises revolve around applying the fundamental concepts of "Fluid Mechanics" to obtain solutions to diverse concrete problems, and, in so doing, the students' skill in the mathematical modelling of practical problems is developed. In addition, 30 challenging questions WITHOUT detailed solutions have been included. While lecturers will find these questions suitable for examinations and tests, students themselves can use them to check their understanding of the subject.




Fluid Mechanics Through Problems


Book Description

This Is An Outcome Of Authors Over Thirty Years Of Teaching Fluid Mechanics To Undergraduate And Postgraduate Students. The Book Is Written With The Purpose That, Through This Book, Student Should Appreciate The Strength And Limitations Of The Theory, And Also Its Potential For Application In Solving A Variety Of Engineering Problems Of Practical Importance. It Makes Available To The Students, Appearing For Diploma And Undergraduate Courses In Civil, Chemical And Mechanical Engineering, A Book Which Briefly Introduces The Necessary Theory, Followed By A Set Of Descriptive/Objective Questions.In Seventeen Chapters The Book Covers The Broad Areas Of Fluid Properties, Kinematics, Dynamics, Dimensional Analysis, Laminar Flow, Boundary Layer Theory, Turbulent Flow, Forces On Immersed Bodies, Open Channel Flow, Compressible And Unsteady Flows, And Pumps And Turbines.




Practice Problems with Solutions


Book Description

This Practice Problems with Solutions was written to accompany Engineering Fluid Mechanics by Clayton Crowe. It helps to build a stronger for students through practice, since connecting the math and theory of fluid mechanics to practical applications can be a difficult process. Simple and effective examples show how key equations are utilized in practice, and step-by-step descriptions provide details into the processes that engineers follow.







Riemann Solvers and Numerical Methods for Fluid Dynamics


Book Description

High resolution upwind and centered methods are today a mature generation of computational techniques applicable to a wide range of engineering and scientific disciplines, Computational Fluid Dynamics (CFD) being the most prominent up to now. This textbook gives a comprehensive, coherent and practical presentation of this class of techniques. The book is designed to provide readers with an understanding of the basic concepts, some of the underlying theory, the ability to critically use the current research papers on the subject, and, above all, with the required information for the practical implementation of the methods. Applications include: compressible, steady, unsteady, reactive, viscous, non-viscous and free surface flows.




Practical Fluid Mechanics for Engineering Applications


Book Description

Provides the definition, equations and derivations that characterize the foundation of fluid mechanics utilizing minimum mathematics required for clarity yet retaining academic integrity. The text focuses on pipe flow, flow in open channels, flow measurement methods, forces on immersed objects, and unsteady flow. It includes over 50 fully solved problems to illustrate each concepts.;Three chapters of the book are reprinted from Fundamental Fluid Mechanics for the Practical Engineer by James W. Murdock.