Solving Combinatorial Optimization Problems in Parallel Methods and Techniques


Book Description

Solving combinatorial optimization problems can often lead to runtime growing exponentially as a function of the input size. But important real-world problems, industrial applications, and academic research challenges, may demand exact optimal solutions. In such situations, parallel processing can reduce the runtime from days or months, typical when one workstation is used, to a few minutes or even seconds. Partners of the CEC-sponsored SCOOP Project (Solving Combinatorial Optimization Problems in Parallel) contributed, on invitation, to this book; much attention was paid to competent coverage of the topic and the style of writing. Readers will include students, scientists, engineers, and professionals interested in the design and implementation of parallel algorithms for solving combinatorial optimization problems.




Parallel Combinatorial Optimization


Book Description

This text provides an excellent balance of theory and application that enables you to deploy powerful algorithms, frameworks, and methodologies to solve complex optimization problems in a diverse range of industries. Each chapter is written by leading experts in the fields of parallel and distributed optimization. Collectively, the contributions serve as a complete reference to the field of combinatorial optimization, including details and findings of recent and ongoing investigations.




Optimization Techniques for Solving Complex Problems


Book Description

Real-world problems and modern optimization techniques to solve them Here, a team of international experts brings together core ideas for solving complex problems in optimization across a wide variety of real-world settings, including computer science, engineering, transportation, telecommunications, and bioinformatics. Part One—covers methodologies for complex problem solving including genetic programming, neural networks, genetic algorithms, hybrid evolutionary algorithms, and more. Part Two—delves into applications including DNA sequencing and reconstruction, location of antennae in telecommunication networks, metaheuristics, FPGAs, problems arising in telecommunication networks, image processing, time series prediction, and more. All chapters contain examples that illustrate the applications themselves as well as the actual performance of the algorithms.?Optimization Techniques for Solving Complex Problems is a valuable resource for practitioners and researchers who work with optimization in real-world settings.




Handbook of Combinatorial Optimization


Book Description

Combinatorial (or discrete) optimization is one of the most active fields in the interface of operations research, computer science, and applied math ematics. Combinatorial optimization problems arise in various applications, including communications network design, VLSI design, machine vision, air line crew scheduling, corporate planning, computer-aided design and man ufacturing, database query design, cellular telephone frequency assignment, constraint directed reasoning, and computational biology. Furthermore, combinatorial optimization problems occur in many diverse areas such as linear and integer programming, graph theory, artificial intelligence, and number theory. All these problems, when formulated mathematically as the minimization or maximization of a certain function defined on some domain, have a commonality of discreteness. Historically, combinatorial optimization starts with linear programming. Linear programming has an entire range of important applications including production planning and distribution, personnel assignment, finance, alloca tion of economic resources, circuit simulation, and control systems. Leonid Kantorovich and Tjalling Koopmans received the Nobel Prize (1975) for their work on the optimal allocation of resources. Two important discover ies, the ellipsoid method (1979) and interior point approaches (1984) both provide polynomial time algorithms for linear programming. These algo rithms have had a profound effect in combinatorial optimization. Many polynomial-time solvable combinatorial optimization problems are special cases of linear programming (e.g. matching and maximum flow). In addi tion, linear programming relaxations are often the basis for many approxi mation algorithms for solving NP-hard problems (e.g. dual heuristics).




Handbook of combinatorial optimization


Book Description

Combinatorial (or discrete) optimization is one of the most active fields in the interface of operations research, computer science, and applied math ematics. Combinatorial optimization problems arise in various applications, including communications network design, VLSI design, machine vision, air line crew scheduling, corporate planning, computer-aided design and man ufacturing, database query design, cellular telephone frequency assignment, constraint directed reasoning, and computational biology. Furthermore, combinatorial optimization problems occur in many diverse areas such as linear and integer programming, graph theory, artificial intelligence, and number theory. All these problems, when formulated mathematically as the minimization or maximization of a certain function defined on some domain, have a commonality of discreteness. Historically, combinatorial optimization starts with linear programming. Linear programming has an entire range of important applications including production planning and distribution, personnel assignment, finance, alloca tion of economic resources, circuit simulation, and control systems. Leonid Kantorovich and Tjalling Koopmans received the Nobel Prize (1975) for their work on the optimal allocation of resources. Two important discover ies, the ellipsoid method (1979) and interior point approaches (1984) both provide polynomial time algorithms for linear programming. These algo rithms have had a profound effect in combinatorial optimization. Many polynomial-time solvable combinatorial optimization problems are special cases of linear programming (e.g. matching and maximum flow). In addi tion, linear programming relaxations are often the basis for many approxi mation algorithms for solving NP-hard problems (e.g. dual heuristics)."







Applied Parallel Computing. Industrial Computation and Optimization


Book Description

Although the last decade has witnessed significant advances in control theory for finite and infinite dimensional systems, the stability and control of time-delay systems have not been fully investigated. Many problems exist in this field that are still unresolved, and there is a tendency for the numerical methods available either to be too general or too specific to be applied accurately across a range of problems. This monograph brings together the latest trends and new results in this field, with the aim of presenting methods covering a large range of techniques. Particular emphasis is placed on methods that can be directly applied to specific problems. The resulting book is one that will be of value to both researchers and practitioners.




Parallel Processing of Discrete Problems


Book Description

In the past two decades, breakthroughs in computer technology have made a tremendous impact on optimization. In particular, availability of parallel computers has created substantial interest in exploring the use of parallel processing for solving discrete and global optimization problems. The chapters in this volume cover a broad spectrum of recent research in parallel processing of discrete and related problems. The topics discussed include distributed branch-and-bound algorithms, parallel genetic algorithms for large scale discrete problems, simulated annealing, parallel branch-and-bound search under limited-memory constraints, parallelization of greedy randomized adaptive search procedures, parallel optical models of computing, randomized parallel algorithms, general techniques for the design of parallel discrete algorithms, parallel algorithms for the solution of quadratic assignment and satisfiability problems. The book will be a valuable source of information to faculty, students and researchers in combinatorial optimization and related areas.




Combinatorial Optimization Problems: Quantum Computing


Book Description

"Combinatorial Optimization Problems: Quantum Computing" is an introductory guide that bridges the gap between combinatorial optimization and quantum computing for absolute beginners. This book unpacks fundamental concepts in optimization and explores how quantum computing can revolutionize the way we approach complex problems. Through clear explanations and relatable examples, readers will gain an understanding of both fields without needing any prior knowledge of quantum mechanics or advanced mathematics. Ideal for those curious about the future of technology, this book serves as a stepping stone into the fascinating world of quantum algorithms and their applications in optimization.




Models for Parallel and Distributed Computation


Book Description

Parallel and distributed computation has been gaining a great lot of attention in the last decades. During this period, the advances attained in computing and communication technologies, and the reduction in the costs of those technolo gies, played a central role in the rapid growth of the interest in the use of parallel and distributed computation in a number of areas of engineering and sciences. Many actual applications have been successfully implemented in various plat forms varying from pure shared-memory to totally distributed models, passing through hybrid approaches such as distributed-shared memory architectures. Parallel and distributed computation differs from dassical sequential compu tation in some of the following major aspects: the number of processing units, independent local dock for each unit, the number of memory units, and the programming model. For representing this diversity, and depending on what level we are looking at the problem, researchers have proposed some models to abstract the main characteristics or parameters (physical components or logical mechanisms) of parallel computers. The problem of establishing a suitable model is to find a reasonable trade-off among simplicity, power of expression and universality. Then, be able to study and analyze more precisely the behavior of parallel applications.