Solving Statics Problems with Matlab


Book Description

Over the past 50 years, Meriam & Kraige's Engineering Mechanics: Statics has established a highly respected tradition of Excellence—A Tradition that emphasizes accuracy, rigor, clarity, and applications. Now completely revised, redesigned, and modernized, the fifth edition of this classic text builds on these strengths, adding new problems and a more accessible, student-friendly presentation. Solving Statics Problems with Matlab If MATLAB is the operating system you need to use for your engineering calculations and problem solving, this reference will be a valuable tutorial for your studies. Written as a guidebook for students in the Engineering Statics class, it will help you with your engineering assignments throughout the course.







Solving Vibration Analysis Problems Using MATLAB


Book Description

Solving Engineering Vibration Analysis Problems using MATLAB book is designed as an introductory undergraduate or graduate course for engineering students of all disciplines. Vibration analysis is a multidisciplinary subject and presents a system dynamics methodology based on mathematical fundamentals and stresses physical system modeling. The classical methods of vibration analysis engineering are covered: matrix analysis, Laplace transforms and transfer functions. The numerous worked examples and unsolved exercise problems are intended to provide the reader with an awareness of the general applicability of vibration analysis problems using MATLAB. An extensive bibliography to guide the student to further sources of information on vibration analysis using MATLAB is provided at the end of the book. All end-of chapter problems are fully solved in the Solution Manual available only to Instructors.




System Dynamics for Engineering Students


Book Description

Engineering system dynamics focuses on deriving mathematical models based on simplified physical representations of actual systems, such as mechanical, electrical, fluid, or thermal, and on solving these models for analysis or design purposes. System Dynamics for Engineering Students: Concepts and Applications features a classical approach to system dynamics and is designed to be utilized as a one-semester system dynamics text for upper-level undergraduate students with emphasis on mechanical, aerospace, or electrical engineering. It is the first system dynamics textbook to include examples from compliant (flexible) mechanisms and micro/nano electromechanical systems (MEMS/NEMS). This new second edition has been updated to provide more balance between analytical and computational approaches; introduces additional in-text coverage of Controls; and includes numerous fully solved examples and exercises. - Features a more balanced treatment of mechanical, electrical, fluid, and thermal systems than other texts - Introduces examples from compliant (flexible) mechanisms and MEMS/NEMS - Includes a chapter on coupled-field systems - Incorporates MATLAB® and Simulink® computational software tools throughout the book - Supplements the text with extensive instructor support available online: instructor's solution manual, image bank, and PowerPoint lecture slides NEW FOR THE SECOND EDITION - Provides more balance between analytical and computational approaches, including integration of Lagrangian equations as another modelling technique of dynamic systems - Includes additional in-text coverage of Controls, to meet the needs of schools that cover both controls and system dynamics in the course - Features a broader range of applications, including additional applications in pneumatic and hydraulic systems, and new applications in aerospace, automotive, and bioengineering systems, making the book even more appealing to mechanical engineers - Updates include new and revised examples and end-of-chapter exercises with a wider variety of engineering applications




Fundamentals of Dynamics and Analysis of Motion


Book Description

Suitable as both a reference and a text for graduate students, this book stresses the fundamentals of setting up and solving dynamics problems rather than the indiscriminate use of elaborate formulas. Includes tutorials on relevant software. 2015 edition.




Engineering Dynamics 2.0


Book Description

This book presents a new approach to learning the dynamics of particles and rigid bodies at an intermediate to advanced level. There are three distinguishing features of this approach. First, the primary emphasis is to obtain the equations of motion of dynamical systems and to solve them numerically. As a consequence, most of the analytical exercises and homework found in traditional dynamics texts written at this level are replaced by MATLAB®-based simulations. Second, extensive use is made of matrices. Matrices are essential to define the important role that constraints have on the behavior of dynamical systems. Matrices are also key elements in many of the software tools that engineers use to solve more complex and practical dynamics problems, such as in the multi-body codes used for analyzing mechanical, aerospace, and biomechanics systems. The third and feature is the use of a combination of Newton-Euler and Lagrangian (analytical mechanics) treatments for solving dynamics problems. Rather than discussing these two treatments separately, Engineering Dynamics 2.0 uses a geometrical approach that ties these two treatments together, leading to a more transparent description of difficult concepts such as "virtual" displacements. Some important highlights of the book include: Extensive discussion of the role of constraints in formulating and solving dynamics problems. Implementation of a highly unified approach to dynamics in a simple context suitable for a second-level course. Descriptions of non-linear phenomena such as parametric resonances and chaotic behavior. A treatment of both dynamic and static stability. Overviews of the numerical methods (ordinary differential equation solvers, Newton-Raphson method) needed to solve dynamics problems. An introduction to the dynamics of deformable bodies and the use of finite difference and finite element methods. Engineering Dynamics 2.0 provides a unique, modern treatment of dynamics problems that is directly useful in advanced engineering applications. It is a valuable resource for undergraduate and graduate students and for practicing engineers.




Structural Dynamics


Book Description

The use of COSMOS for the analysis and solution of structural dynamics problems is introduced in this new edition. The COSMOS program was selected from among the various professional programs available because it has the capability of solving complex problems in structures, as well as in other engin eering fields such as Heat Transfer, Fluid Flow, and Electromagnetic Phenom ena. COSMOS includes routines for Structural Analysis, Static, or Dynamics with linear or nonlinear behavior (material nonlinearity or large displacements), and can be used most efficiently in the microcomputer. The larger version of COSMOS has the capacity for the analysis of structures modeled up to 64,000 nodes. This fourth edition uses an introductory version that has a capability limited to 50 nodes or 50 elements. This version is included in the supplement, STRUCTURAL DYNAMICS USING COSMOS 1. The sets of educational programs in Structural Dynamics and Earthquake Engineering that accompanied the third edition have now been extended and updated. These sets include programs to determine the response in the time or frequency domain using the FFf (Fast Fourier Transform) of structures modeled as a single oscillator. Also included is a program to determine the response of an inelastic system with elastoplastic behavior and a program for the development of seismic response spectral charts. A set of seven computer programs is included for modeling structures as two-dimensional and three dimensional frames and trusses.




MATLAB for Mechanical Engineers


Book Description

Presents an introduction to MATLAB basics along with MATLAB commands. This book includes computer aided design and analysis using MATLAB with the Symbolic Math Tool box and the Control System Tool box. It intends to improve the programming skills of students using MATLAB environment and to use it as a tool in solving problems in engineering.




Modeling and Simulation of Systems Using MATLAB and Simulink


Book Description

Not only do modeling and simulation help provide a better understanding of how real-world systems function, they also enable us to predict system behavior before a system is actually built and analyze systems accurately under varying operating conditions. Modeling and Simulation of Systems Using MATLAB® and Simulink® provides comprehensive, state-of-the-art coverage of all the important aspects of modeling and simulating both physical and conceptual systems. Various real-life examples show how simulation plays a key role in understanding real-world systems. The author also explains how to effectively use MATLAB and Simulink software to successfully apply the modeling and simulation techniques presented. After introducing the underlying philosophy of systems, the book offers step-by-step procedures for modeling different types of systems using modeling techniques, such as the graph-theoretic approach, interpretive structural modeling, and system dynamics modeling. It then explores how simulation evolved from pre-computer days into the current science of today. The text also presents modern soft computing techniques, including artificial neural networks, fuzzy systems, and genetic algorithms, for modeling and simulating complex and nonlinear systems. The final chapter addresses discrete systems modeling. Preparing both undergraduate and graduate students for advanced modeling and simulation courses, this text helps them carry out effective simulation studies. In addition, graduate students should be able to comprehend and conduct simulation research after completing this book.