Handbook of Combinatorial Optimization


Book Description

Combinatorial (or discrete) optimization is one of the most active fields in the interface of operations research, computer science, and applied math ematics. Combinatorial optimization problems arise in various applications, including communications network design, VLSI design, machine vision, air line crew scheduling, corporate planning, computer-aided design and man ufacturing, database query design, cellular telephone frequency assignment, constraint directed reasoning, and computational biology. Furthermore, combinatorial optimization problems occur in many diverse areas such as linear and integer programming, graph theory, artificial intelligence, and number theory. All these problems, when formulated mathematically as the minimization or maximization of a certain function defined on some domain, have a commonality of discreteness. Historically, combinatorial optimization starts with linear programming. Linear programming has an entire range of important applications including production planning and distribution, personnel assignment, finance, alloca tion of economic resources, circuit simulation, and control systems. Leonid Kantorovich and Tjalling Koopmans received the Nobel Prize (1975) for their work on the optimal allocation of resources. Two important discover ies, the ellipsoid method (1979) and interior point approaches (1984) both provide polynomial time algorithms for linear programming. These algo rithms have had a profound effect in combinatorial optimization. Many polynomial-time solvable combinatorial optimization problems are special cases of linear programming (e.g. matching and maximum flow). In addi tion, linear programming relaxations are often the basis for many approxi mation algorithms for solving NP-hard problems (e.g. dual heuristics).




Handbook of combinatorial optimization


Book Description

Combinatorial (or discrete) optimization is one of the most active fields in the interface of operations research, computer science, and applied math ematics. Combinatorial optimization problems arise in various applications, including communications network design, VLSI design, machine vision, air line crew scheduling, corporate planning, computer-aided design and man ufacturing, database query design, cellular telephone frequency assignment, constraint directed reasoning, and computational biology. Furthermore, combinatorial optimization problems occur in many diverse areas such as linear and integer programming, graph theory, artificial intelligence, and number theory. All these problems, when formulated mathematically as the minimization or maximization of a certain function defined on some domain, have a commonality of discreteness. Historically, combinatorial optimization starts with linear programming. Linear programming has an entire range of important applications including production planning and distribution, personnel assignment, finance, alloca tion of economic resources, circuit simulation, and control systems. Leonid Kantorovich and Tjalling Koopmans received the Nobel Prize (1975) for their work on the optimal allocation of resources. Two important discover ies, the ellipsoid method (1979) and interior point approaches (1984) both provide polynomial time algorithms for linear programming. These algo rithms have had a profound effect in combinatorial optimization. Many polynomial-time solvable combinatorial optimization problems are special cases of linear programming (e.g. matching and maximum flow). In addi tion, linear programming relaxations are often the basis for many approxi mation algorithms for solving NP-hard problems (e.g. dual heuristics)."




Combinatorial Optimization Problems in Planning and Decision Making


Book Description

The book focuses on the next fields of computer science: combinatorial optimization, scheduling theory, decision theory, and computer-aided production management systems. It also offers a quick introduction into the theory of PSC-algorithms, which are a new class of efficient methods for intractable problems of combinatorial optimization. A PSC-algorithm is an algorithm which includes: sufficient conditions of a feasible solution optimality for which their checking can be implemented only at the stage of a feasible solution construction, and this construction is carried out by a polynomial algorithm (the first polynomial component of the PSC-algorithm); an approximation algorithm with polynomial complexity (the second polynomial component of the PSC-algorithm); also, for NP-hard combinatorial optimization problems, an exact subalgorithm if sufficient conditions were found, fulfilment of which during the algorithm execution turns it into a polynomial complexity algorithm. Practitioners and software developers will find the book useful for implementing advanced methods of production organization in the fields of planning (including operative planning) and decision making. Scientists, graduate and master students, or system engineers who are interested in problems of combinatorial optimization, decision making with poorly formalized overall goals, or a multiple regression construction will benefit from this book.




Parallel Processing and Applied Mathematics, Part II


Book Description

This two-volume-set (LNCS 7203 and 7204) constitutes the refereed proceedings of the 9th International Conference on Parallel Processing and Applied Mathematics, PPAM 2011, held in Torun, Poland, in September 2011. The 130 revised full papers presented in both volumes were carefully reviewed and selected from numerous submissions. The papers address issues such as parallel/distributed architectures and mobile computing; numerical algorithms and parallel numerics; parallel non-numerical algorithms; tools and environments for parallel/distributed/grid computing; applications of parallel/distributed computing; applied mathematics, neural networks and evolutionary computing; history of computing.




Recent Advances in Parallel Virtual Machine and Message Passing Interface


Book Description

This book constitutes the refereed proceedings of the 14th European PVM/MPI Users' Group Meeting held in Paris, France, September 30 - October 3, 2007. The 40 revised full papers presented together with abstracts of six invited contributions, three tutorial papers and six poster papers were carefully reviewed and selected from 68 submissions. The papers are organized in topical sections.




Algorithmics for Hard Problems


Book Description

An introduction to the methods of designing algorithms for hard computing tasks, concentrating mainly on approximate, randomized, and heuristic algorithms, and on the theoretical and experimental comparison of these approaches according to the requirements of the practice. This is the first book to systematically explain and compare all the main possibilities of attacking hard computing problems. It also closes the gap between theory and practice by providing at once a graduate textbook and a handbook for practitioners dealing with hard computing problems.




SOFSEM 2000: Theory and Practice of Informatics


Book Description

This book constitutes the refereed proceedings of the 27th Conference on Current Trends in Theory and Practice of Informatics, SOFSEM 2000, held in Milovy, Czech Republic in November/December 2000. The 16 invited papers and 18 contributed papers selected from 36 submissions were carefully selected in order to provide representative coverage of the three tracks: trends in algorithms, information technologies and practice, and computational perception.




Advanced Computational Methods for Knowledge Engineering


Book Description

The proceedings consists of 30 papers which have been selected and invited from the submissions to the 2nd International Conference on Computer Science, Applied Mathematics and Applications (ICCSAMA 2014) held on 8-9 May, 2014 in Budapest, Hungary. The conference is organized into 7 sessions: Advanced Optimization Methods and Their Applications, Queueing Models and Performance Evaluation, Software Development and Testing, Computational Methods for Mobile and Wireless Networks, Computational Methods for Knowledge Engineering, Logic Based Methods for Decision Making and Data Mining and Nonlinear Systems and Applications, respectively. All chapters in the book discuss theoretical and practical issues connected with computational methods and optimization methods for knowledge engineering. The editors hope that this volume can be useful for graduate and Ph.D. students and researchers in Computer Science and Applied Mathematics. It is the hope of the editors that readers of this volume can find many inspiring ideas and use them to their research. Many such challenges are suggested by particular approaches and models presented in individual chapters of this book.




Neural Computing for Optimization and Combinatorics


Book Description

Since Hopfield proposed neural network computing for optimization and combinatorics problems, many neural network investigators have been working on optimization problems. In this book a variety of optimization problems and combinatorics problems are presented by respective experts.A very useful reference book for those who want to solve real-world applications, this book contains applications in graph theory, mathematics, stochastic computing including the multiple relaxation, associative memory and control, resource allocation problems, system identification and dynamic control, and job-stop scheduling.




Applied Simulated Annealing


Book Description

The 8th International Symposium on fracture mechanics of ceramics was held in on the campus of the University of Houston, Houston, TX, USA, on February 25-28, 2003. With the natural maturing of the fields of structural ceramics, this symposium focused on nano-scale materials, composites, thin films and coatings as well as glass. The symposium also addressed new issues on fundamentals of fracture mechanics and contact mechanics, and a session on reliability and standardization.