Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems


Book Description

This book introduces the numerical technique of polynomial continuation, which is used to compute solutions to systems of polynomial equations. Originally published in 1987, it remains a useful starting point for the reader interested in learning how to solve practical problems without advanced mathematics. Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems is easy to understand, requiring only a knowledge of undergraduate-level calculus and simple computer programming. The book is also practical; it includes descriptions of various industrial-strength engineering applications and offers Fortran code for polynomial solvers on an associated Web page. It provides a resource for high-school and undergraduate mathematics projects. Audience: accessible to readers with limited mathematical backgrounds. It is appropriate for undergraduate mechanical engineering courses in which robotics and mechanisms applications are studied.




The Numerical Solution of Systems of Polynomials Arising in Engineering and Science


Book Description

Written by the founders of the new and expanding field of numerical algebraic geometry, this is the first book that uses an algebraic-geometric approach to the numerical solution of polynomial systems and also the first one to treat numerical methods for finding positive dimensional solution sets. The text covers the full theory from methods developed for isolated solutions in the 1980's to the most recent research on positive dimensional sets.




Introduction to Numerical Continuation Methods


Book Description

Numerical continuation methods have provided important contributions toward the numerical solution of nonlinear systems of equations for many years. The methods may be used not only to compute solutions, which might otherwise be hard to obtain, but also to gain insight into qualitative properties of the solutions. Introduction to Numerical Continuation Methods, originally published in 1979, was the first book to provide easy access to the numerical aspects of predictor corrector continuation and piecewise linear continuation methods. Not only do these seemingly distinct methods share many common features and general principles, they can be numerically implemented in similar ways. The book also features the piecewise linear approximation of implicitly defined surfaces, the algorithms of which are frequently used in computer graphics, mesh generation, and the evaluation of surface integrals. To help potential users of numerical continuation methods create programs adapted to their particular needs, this book presents pseudo-codes and Fortran codes as illustrations. Since it first appeared, many specialized packages for treating such varied problems as bifurcation, polynomial systems, eigenvalues, economic equilibria, optimization, and the approximation of manifolds have been written. The original extensive bibliography has been updated in the SIAM Classics edition to include more recent references and several URLs so users can look for codes to suit their needs. Audience: this book continues to be useful for researchers and graduate students in mathematics, sciences, engineering, economics, and business. A background in elementary analysis and linear algebra are adequate prerequisites for reading this book; some knowledge from a first course in numerical analysis may also be helpful.




Numerical Continuation Methods


Book Description

Over the past fifteen years two new techniques have yielded extremely important contributions toward the numerical solution of nonlinear systems of equations. This book provides an introduction to and an up-to-date survey of numerical continuation methods (tracing of implicitly defined curves) of both predictor-corrector and piecewise-linear types. It presents and analyzes implementations aimed at applications to the computation of zero points, fixed points, nonlinear eigenvalue problems, bifurcation and turning points, and economic equilibria. Many algorithms are presented in a pseudo code format. An appendix supplies five sample FORTRAN programs with numerical examples, which readers can adapt to fit their purposes, and a description of the program package SCOUT for analyzing nonlinear problems via piecewise-linear methods. An extensive up-to-date bibliography spanning 46 pages is included. The material in this book has been presented to students of mathematics, engineering and sciences with great success, and will also serve as a valuable tool for researchers in the field.




The Numerical Solution Of Systems Of Polynomials Arising In Engineering And Science


Book Description

Written by the founders of the new and expanding field of numerical algebraic geometry, this is the first book that uses an algebraic-geometric approach to the numerical solution of polynomial systems and also the first one to treat numerical methods for finding positive dimensional solution sets. The text covers the full theory from methods developed for isolated solutions in the 1980's to the most recent research on positive dimensional sets.




Numerical Methods for Large Eigenvalue Problems


Book Description

This revised edition discusses numerical methods for computing the eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Each chapter was updated by shortening or deleting outdated topics, adding topics of more recent interest and adapting the Notes and References section. Significant changes have been made to Chapters 6 through 8, which describe algorithms and their implementations and now include topics such as the implicit restart techniques, the Jacobi-Davidson method and automatic multilevel substructuring.




Convex Analysis and Variational Problems


Book Description

No one working in duality should be without a copy of Convex Analysis and Variational Problems. This book contains different developments of infinite dimensional convex programming in the context of convex analysis, including duality, minmax and Lagrangians, and convexification of nonconvex optimization problems in the calculus of variations (infinite dimension). It also includes the theory of convex duality applied to partial differential equations; no other reference presents this in a systematic way. The minmax theorems contained in this book have many useful applications, in particular the robust control of partial differential equations in finite time horizon. First published in English in 1976, this SIAM Classics in Applied Mathematics edition contains the original text along with a new preface and some additional references.




The Finite Element Method for Elliptic Problems


Book Description

This is the only book available that fully analyzes the mathematical foundations of the finite element method. Not only is it valuable reference and introduction to current research, it is also a working textbook for graduate courses in numerical analysis, including useful figures and exercises of varying difficulty.




Initial-Boundary Value Problems and the Navier-Stokes Equation


Book Description

Initial-Boundary Value Problems and the Navier-Stokes Equations gives an introduction to the vast subject of initial and initial-boundary value problems for PDEs. Applications to parabolic and hyperbolic systems are emphasized in this text. The Navier-Stokes equations for compressible and incompressible flows are taken as an example to illustrate the results. The subjects addressed in the book, such as the well-posedness of initial-boundary value problems, are of frequent interest when PDEs are used in modeling or when they are solved numerically. The book explains the principles of these subjects. The reader will learn what well-posedness or ill-posedness means and how it can be demonstrated for concrete problems. Audience: when the book was written, the main intent was to write a text on initial-boundary value problems that was accessible to a rather wide audience. Functional analytical prerequisites were kept to a minimum or were developed in the book. Boundary conditions are analyzed without first proving trace theorems, and similar simplifications have been used throughout. This book continues to be useful to researchers and graduate students in applied mathematics and engineering.




The Linear Complementarity Problem


Book Description

A revised edition of the standard reference on the linear complementarity problem.