Handbook of Hydrothermal Technology


Book Description

Quartz, zeolites, gemstones, perovskite type oxides, ferrite, carbon allotropes, complex coordinated compounds and many more -- all products now being produced using hydrothermal technology. Handbook of Hydrothermal Technology brings together the latest techniques in this rapidly advancing field in one exceptionally useful, long-needed volume.The handbook provides a single source for understanding how aqueous solvents or mineralizers work under temperature and pressure to dissolve and recrystallize normally insoluble materials, and decompose or recycle any waste material. The result, as the authors show in the book, is technologically the most efficient method in crystal growth, materials processing, and waste treatment. The book gives scientists and technologists an overview of the entire subject including: À Evolution of the technology from geology to widespread industrial use. À Descriptions of equipment used in the process and how it works.À Problems involved with the growth of crystals, processing of technological materials, environmental and safety issues.À Analysis of the direction of today's technology. In addition, readers get a close look at the hydrothermal synthesis of zeolites, fluorides, sulfides, tungstates, and molybdates, as well as native elements and simple oxides. Delving into the commercial production of various types, the authors clarify the effects of temperature, pressure, solvents, and various other chemical components on the hydrothermal processes. - Gives an overview of the evolution of Hydrothermal Technology from geology to widespread industrial use - Describes the equipment used in the process and how it works - Discusses problems involved with the growth of crystals, processing of technological materials, and environmental and safety issues







On Solar Hydrogen and Nanotechnology


Book Description

More energy from the sun strikes Earth in an hour than is consumed by humans in an entire year. Efficiently harnessing solar power for sustainable generation of hydrogen requires low-cost, purpose-built, functional materials combined with inexpensive large-scale manufacturing methods. These issues are comprehensively addressed in On Solar Hydrogen & Nanotechnology – an authoritative, interdisciplinary source of fundamental and applied knowledge in all areas related to solar hydrogen. Written by leading experts, the book emphasizes state-of-the-art materials and characterization techniques as well as the impact of nanotechnology on this cutting edge field. Addresses the current status and prospects of solar hydrogen, including major achievements, performance benchmarks, technological limitations, and crucial remaining challenges Covers the latest advances in fundamental understanding and development in photocatalytic reactions, semiconductor nanostructures and heterostructures, quantum confinement effects, device fabrication, modeling, simulation, and characterization techniques as they pertain to solar generation of hydrogen Assesses and establishes the present and future role of solar hydrogen in the hydrogen economy Contains numerous graphics to illustrate concepts, techniques, and research results On Solar Hydrogen & Nanotechnology is an essential reference for materials scientists, physical and inorganic chemists, electrochemists, physicists, and engineers carrying out research on solar energy, photocatalysis, or semiconducting nanomaterials, both in academia and industry. It is also an invaluable resource for graduate students and postdoctoral researchers as well as business professionals and consultants with an interest in renewable energy.




Pyrochlore Oxides


Book Description

This book presents an in-depth exploration of complex metal oxides, focusing on their applications in photocatalysis and biomedical materials. It highlights the practical importance of complex metal oxides, which have gained significant attention in recent years due to their diverse range of properties. The book specifically delves into the most representative series of compounds based on stable structural types of minerals, such as perovskite, fluorite, pyrochlore, corundum, and rutile. It also emphasizes the scientific interest in the pyrochlore mineral structure, which has been shown to exhibit photocatalytic activity. Recent studies have revealed that some compounds with the pyrochlore structure can act as promising candidates for photocatalysis. Additionally, the book highlights the use of photocatalysis in producing biomedical materials based on natural polymers. These materials possess a unique combination of components assembled in a specific structure, which makes them highly attractive for regenerative medicine associated with cell/tissue regeneration stimulation. Overall, this book offers a comprehensive analysis of the potential of complex metal oxides, particularly those with the pyrochlore structure, and is particularly useful for those researchers working in the fields of green chemistry and biomedical materials science.




Nanostructures for Novel Therapy


Book Description

Nanostructures for Novel Therapy: Synthesis, Characterization and Applications focuses on the fabrication and characterization of therapeutic nanostructures, in particular, synthesis, design, and in vitro and in vivo therapeutic evaluation. The chapters provide a cogent overview of recent therapeutic applications of nanostructured materials that includes applications of nanostructured materials for wound healing in plastic surgery and stem cell therapy. The book explores the promise for more effective therapy through the use of nanostructured materials, while also assessing the challenges their use might pose from both an economic and medicinal point of view. This innovative look at how nanostructured materials are used in therapeutics will be of great benefit to researchers, providing a greater understanding of the different ways nanomaterials could improve medical treatment, along with a discussion of the obstacles that need to be overcome in order to guarantee widespread availability. - Outlines how the characteristics of nanostructures made from different materials gives particular properties that can be successfully used in therapeutics - Compares the properties of different nanostructures, allowing medicinal chemists and engineers to select which are most appropriate for their needs - Highlights new uses of nanostructures within the therapeutic field, enabling the discovery of new, more effective drugs




Metal Oxide Nanostructures


Book Description

Metal Oxide Nanostructures: Synthesis, Properties and Applications covers the theoretical and experimental aspects related to design, synthesis, fabrication, processing, structural, morphological, optical and electronic properties on the topic. In addition, it reviews surface functionalization and hybrid materials, focusing on the advantages of these oxide nanostructures. The book concludes with the current and future prospective applications of these materials. Users will find a complete overview of all the important topics related to oxide nanostructures, from the physics of the materials, to its application. - Delves into hybrid structured metal oxides and their promising use in the next generation of electronic devices - Includes fundamental chapters on synthesis design and the properties of metal oxide nanostructures - Provides an in-depth overview of novel applications, including chromogenics, electronics and energy




Nanomaterials for Water Treatment and Remediation


Book Description

Offering a comprehensive view of water-treatment technologies, Nanomaterials for Water Treatment and Remediation explores recent developments in the use of advanced nanomaterials (ANMs) for water treatment and remediation. In-depth reaction mechanisms in water-treatment technologies, including adsorption, catalysis, and membrane filtration for water purification using ANMs, are discussed in detail. The book includes an investigation of the fabrication processes of nanostructured materials and the fundamental aspects of surfaces at the nanoscale. The book also covers the removal of water-borne pathogens and microbes through a photochemical approach. FEATURES Explains various chemical treatments for the removal and separation of hazardous dyes, organic pollutants, pharmaceuticals, and heavy metals from aqueous solutions, including adsorption, advanced oxidation process, and photocatalysis Discusses the rational design of nanoporous materials with a tunable pore structure and fabrication of nanomaterials by surface chemistry engineering Covers the role of nanomaterials-assisted oxidation and reduction processes, design of nano-assisted membrane-based separation, and multifunctional nanomaterials and nanodevices for water treatment Provides an understanding of the structure–activity relationship and stability of ANMs under critical experimental conditions Identifies potential challenges in the application of multifunctional ANMs for future research Nanomaterials for Water Treatment and Remediation is aimed at researchers and industry professionals in chemical, materials, and environmental engineering as well as related fields interested in the application of advanced materials to water treatment and remediation.




Chemical Hardness


Book Description




Ceramic Abstracts


Book Description




ZnO and Their Hybrid Nano-Structures


Book Description

ZnO and its hybrid nanostructures have unique optical, physical and chemical properties. The book covers recent trends in processing techniques and applications. Topics include solar cells, photo-voltaic devices, fuel cells, uv filters, lasers, light-emitting diodes, photo-detectors, spin-tronic devices, magnetic semiconductors, nano-generators, piezotronics, photo-catalytic applications against harmful organic pollutants like dyes, heavy metals, antibiotics, and sensors such as bio sensors, chemical sensors, gas sensors. Keywords: ZnO, Nano ZnO, Point Defects, Magnetic Semiconductors, Hybrid Nanostructures, Cell Applications, Nanoadsorbant for Heavy Metal Removals, Diagnostics, ZnO Nano-Carriers, ZnO Thin Films Fabrication.