Arithmetic and Geometry over Local Fields


Book Description

This volume introduces some recent developments in Arithmetic Geometry over local fields. Its seven chapters are centered around two common themes: the study of Drinfeld modules and non-Archimedean analytic geometry. The notes grew out of lectures held during the research program "Arithmetic and geometry of local and global fields" which took place at the Vietnam Institute of Advanced Study in Mathematics (VIASM) from June to August 2018. The authors, leading experts in the field, have put great effort into making the text as self-contained as possible, introducing the basic tools of the subject. The numerous concrete examples and suggested research problems will enable graduate students and young researchers to quickly reach the frontiers of this fascinating branch of mathematics.




Local Fields


Book Description

The goal of this book is to present local class field theory from the cohomo logical point of view, following the method inaugurated by Hochschild and developed by Artin-Tate. This theory is about extensions-primarily abelian-of "local" (i.e., complete for a discrete valuation) fields with finite residue field. For example, such fields are obtained by completing an algebraic number field; that is one of the aspects of "localisation". The chapters are grouped in "parts". There are three preliminary parts: the first two on the general theory of local fields, the third on group coho mology. Local class field theory, strictly speaking, does not appear until the fourth part. Here is a more precise outline of the contents of these four parts: The first contains basic definitions and results on discrete valuation rings, Dedekind domains (which are their "globalisation") and the completion process. The prerequisite for this part is a knowledge of elementary notions of algebra and topology, which may be found for instance in Bourbaki. The second part is concerned with ramification phenomena (different, discriminant, ramification groups, Artin representation). Just as in the first part, no assumptions are made here about the residue fields. It is in this setting that the "norm" map is studied; I have expressed the results in terms of "additive polynomials" and of "multiplicative polynomials", since using the language of algebraic geometry would have led me too far astray.







Supergravity


Book Description

Supergravity, together with string theory, is one of the most significant developments in theoretical physics. Written by two of the most respected workers in the field, this is the first-ever authoritative and systematic account of supergravity. The book starts by reviewing aspects of relativistic field theory in Minkowski spacetime. After introducing the relevant ingredients of differential geometry and gravity, some basic supergravity theories (D=4 and D=11) and the main gauge theory tools are explained. In the second half of the book, complex geometry and N=1 and N=2 supergravity theories are covered. Classical solutions and a chapter on AdS/CFT complete the book. Numerous exercises and examples make it ideal for Ph.D. students, and with applications to model building, cosmology and solutions of supergravity theories, it is also invaluable to researchers. A website hosted by the authors, featuring solutions to some exercises and additional reading material, can be found at www.cambridge.org/supergravity.




Selected Papers of Walter E. Thirring with Commentaries


Book Description

".... with the huge success of the quantum theory, starting especially with the Schrödinger equation in 1926, came a feeling among the leading physicists that mathematics should keep in the background or, as one person put it, `elegance is for tailors'. From the other side, mid-twentieth century mathematicians were not much more hospitable about intrusions of physics, as we can see, for instance, in Hardy's well known little essay. Walter was one of the first, in the post-war years, to try to put things back together." -- from the Foreword by Elliott Lieb This book contains Thirring's scientific contributions to mathematical physics, statistical physics, general relativity, quantum field theory, and elementary particle theory from 1950 onward. The order of the papers within the various sections is chronological and reflects the development of the fields during the second half of this century. In some cases, Thirring returned to problems decades later when the tools for their solution had ripened. Each section contains introductory comments by Thirring, outlining his motivation for the work at that time.




Homotopy Quantum Field Theory


Book Description

Homotopy Quantum Field Theory (HQFT) is a branch of Topological Quantum Field Theory founded by E. Witten and M. Atiyah. It applies ideas from theoretical physics to study principal bundles over manifolds and, more generally, homotopy classes of maps from manifolds to a fixed target space. This book is the first systematic exposition of Homotopy Quantum Field Theory. It starts with a formal definition of an HQFT and provides examples of HQFTs in all dimensions. The main body of the text is focused on $2$-dimensional and $3$-dimensional HQFTs. A study of these HQFTs leads to new algebraic objects: crossed Frobenius group-algebras, crossed ribbon group-categories, and Hopf group-coalgebras. These notions and their connections with HQFTs are discussed in detail. The text ends with several appendices including an outline of recent developments and a list of open problems. Three appendices by M. Muger and A. Virelizier summarize their work in this area. The book is addressed to mathematicians, theoretical physicists, and graduate students interested in topological aspects of quantum field theory. The exposition is self-contained and well suited for a one-semester graduate course. Prerequisites include only basics of algebra and topology.




Numerical Models in Geomechanics


Book Description

The papers in this volume reflect the current research and advances made in the application of numerical methods in geotechnical engineering. Topics include: instabilities in soil behaviour; environmental geomechanics; and hydro-mechanical coupling in problems of engineering.




The Service Sheet


Book Description




Tip Enhancement


Book Description

This book discusses the recent advances in the area of near-field Raman scattering, mainly focusing on tip-enhanced and surface-enhanced Raman scattering. Some of the key features covered here are the optical structuring and manipulations, single molecule sensitivity, analysis of single-walled carbon nanotubes, and analytic applications in chemistry, biology and material sciences. This book also discusses the plasmonic materials for better enhancement, and optical antennas. Further, near-field microscopy based on second harmonic generation is also discussed. Chapters have been written by some of the leading scientists in this field, who present some of their recent work in this field.·Near-field Raman scattering·Tip-enhanced Raman spectroscopy·Surface-enhanced Raman spectroscopy·Nano-photonics·Nanoanalysis of Physical, chemical and biological materials beyond the diffraction limits·Single molecule detection




Quantum Field Theory and Gravity


Book Description

One of the most challenging problems of contemporary theoretical physics is the mathematically rigorous construction of a theory which describes gravitation and the other fundamental physical interactions within a common framework. The physical ideas which grew from attempts to develop such a theory require highly advanced mathematical methods and radically new physical concepts. This book presents different approaches to a rigorous unified description of quantum fields and gravity. It contains a carefully selected cross-section of lively discussions which took place in autumn 2010 at the fifth conference "Quantum field theory and gravity - Conceptual and mathematical advances in the search for a unified framework" in Regensburg, Germany. In the tradition of the other proceedings covering this series of conferences, a special feature of this book is the exposition of a wide variety of approaches, with the intention to facilitate a comparison. The book is mainly addressed to mathematicians and physicists who are interested in fundamental questions of mathematical physics. It allows the reader to obtain a broad and up-to-date overview of a fascinating active research area.