Methodological Issues of Longitudinal Surveys


Book Description

This book addresses a broad array of pressing challenges of longitudinal surveys and provides innovative solutions to methodological problems based on the example of the NEPS. It covers longitudinal issues such as sampling, weighting, recruiting and fieldwork management, the design of longitudinal surveys and the implementation of constructs, conducting competence tests over the life course, effective methods to improve and to maintain the highest level of data quality, data management tools for large-scale longitudinal surveys, the dissemination of research data to heterogeneous scientific communities, as well as establishing a long-term public relations and communications unit integrating a study’s stakeholder community over time.




Methodology of Longitudinal Surveys


Book Description

Longitudinal surveys are surveys that involve collecting data from multiple subjects on multiple occasions. They are typically used for collecting data relating to social, economic, educational and health-related issues and they serve as an important tool for economists, sociologists, and other researchers. Focusing on the design, implementation and analysis of longitudinal surveys, Methodology of Longitudinal Surveys discusses the current state of the art in carrying out these surveys. The book also covers issues that arise in surveys that collect longitudinal data via retrospective methods. Aimed at researchers and practitioners analyzing data from statistical surveys the book will also be suitable as supplementary reading for graduate students of survey statistics. This book: Covers all the main stages in the design, implementation and analysis of longitudinal surveys. Reviews recent developments in the field, including the use of dependent interviewing and mixed mode data collection. Discusses the state of the art in sampling, weighting and non response adjustment. Features worked examples throughout using real data. Addresses issues arising from the collection of data via retrospective methods, as well as ethical issues, confidentiality and non-response bias. Is written by an international team of contributors consisting of some of the most respected Survey Methodology experts in the field







Longitudinal Qualitative Research


Book Description

Johnny Saldana outlines the basic elements of longitudinal qualitative data, focusing on micro-levels of change observed within individual cases and groups of participants. He draws upon his primary experience in theater education to examine time and change in longitudinal qualitative studies; contending that "playwrights and qualitative researchers write for the same purpose: to create a unique, insightful, and engaging text about the human condition." Offering sixteen specific questions through which researchers may approach the analysis of longitudinal qualitative data, Professor Saldana presents a text intended as a primer for fellow newcomers to long term inquiry, based on traditional social science methods from traditional qualitative and quantitative paradigms, but enriched by an artist-educator's unconventional perspective.




Longitudinal Data Analysis


Book Description

Although many books currently available describe statistical models and methods for analyzing longitudinal data, they do not highlight connections between various research threads in the statistical literature. Responding to this void, Longitudinal Data Analysis provides a clear, comprehensive, and unified overview of state-of-the-art theory




Methods and Applications of Longitudinal Data Analysis


Book Description

Methods and Applications of Longitudinal Data Analysis describes methods for the analysis of longitudinal data in the medical, biological and behavioral sciences. It introduces basic concepts and functions including a variety of regression models, and their practical applications across many areas of research. Statistical procedures featured within the text include: - descriptive methods for delineating trends over time - linear mixed regression models with both fixed and random effects - covariance pattern models on correlated errors - generalized estimating equations - nonlinear regression models for categorical repeated measurements - techniques for analyzing longitudinal data with non-ignorable missing observations Emphasis is given to applications of these methods, using substantial empirical illustrations, designed to help users of statistics better analyze and understand longitudinal data. Methods and Applications of Longitudinal Data Analysis equips both graduate students and professionals to confidently apply longitudinal data analysis to their particular discipline. It also provides a valuable reference source for applied statisticians, demographers and other quantitative methodologists. - From novice to professional: this book starts with the introduction of basic models and ends with the description of some of the most advanced models in longitudinal data analysis - Enables students to select the correct statistical methods to apply to their longitudinal data and avoid the pitfalls associated with incorrect selection - Identifies the limitations of classical repeated measures models and describes newly developed techniques, along with real-world examples.




Methods Matter


Book Description

Educational policy-makers around the world constantly make decisions about how to use scarce resources to improve the education of children. Unfortunately, their decisions are rarely informed by evidence on the consequences of these initiatives in other settings. Nor are decisions typically accompanied by well-formulated plans to evaluate their causal impacts. As a result, knowledge about what works in different situations has been very slow to accumulate. Over the last several decades, advances in research methodology, administrative record keeping, and statistical software have dramatically increased the potential for researchers to conduct compelling evaluations of the causal impacts of educational interventions, and the number of well-designed studies is growing. Written in clear, concise prose, Methods Matter: Improving Causal Inference in Educational and Social Science Research offers essential guidance for those who evaluate educational policies. Using numerous examples of high-quality studies that have evaluated the causal impacts of important educational interventions, the authors go beyond the simple presentation of new analytical methods to discuss the controversies surrounding each study, and provide heuristic explanations that are also broadly accessible. Murnane and Willett offer strong methodological insights on causal inference, while also examining the consequences of a wide variety of educational policies implemented in the U.S. and abroad. Representing a unique contribution to the literature surrounding educational research, this landmark text will be invaluable for students and researchers in education and public policy, as well as those interested in social science.




Longitudinal Data Analysis


Book Description

By looking at the processes of change over time - by carrying out longitudinal studies - researchers answer questions about learning, development, educational growth, social change and medical outcomes. However, longitudinal research has many faces. This book examines all the main approaches as well as newer developments (such as structural equation modelling, multilevel modelling and optimal scaling) to enable the reader to gain a thorough understanding of the approach and make appropriate decisions about which technique can be applied to the research problem. Conceptual explanations are used to keep technical terms to a minimum; examples are provided for each approach; issues of design, measurement and significance are considered; and a standard notation is used throughout.




Intensive Longitudinal Methods


Book Description

This book offers a complete, practical guide to doing an intensive longitudinal study with individuals, dyads, or groups. It provides the tools for studying social, psychological, and physiological processes in everyday contexts, using methods such as diary and experience sampling. A range of engaging, worked-through research examples with datasets are featured. Coverage includes how to: select the best intensive longitudinal design for a particular research question, apply multilevel models to within-subject designs, model within-subject change processes for continuous and categorical outcomes, assess the reliability of within-subject changes, assure sufficient statistical power, and more. Several end-of-chapter write-ups illustrate effective ways to present study findings for publication. Datasets and output in SPSS, SAS, Mplus, HLM, MLwiN, and R for the examples are available on the companion website (www.intensivelongitudinal.com).




Longitudinal Data Analysis


Book Description

This book provides accessible treatment to state-of-the-art approaches to analyzing longitudinal studies. Comprehensive coverage of the most popular analysis tools allows readers to pick and choose the techniques that best fit their research. The analyses are illustrated with examples from major longitudinal data sets including practical information about their content and design. Illustrations from popular software packages offer tips on how to interpret the results. Each chapter features suggested readings for additional study and a list of articles that further illustrate how to implement the analysis and report the results. Syntax examples for several software packages for each of the chapter examples are provided at www.psypress.com/longitudinal-data-analysis. Although many of the examples address health or social science questions related to aging, readers from other disciplines will find the analyses relevant to their work. In addition to demonstrating statistical analysis of longitudinal data, the book shows how to interpret and analyze the results within the context of the research design. The methods covered in this book are applicable to a range of applied problems including short- to long-term longitudinal studies using a range of sample sizes. The book provides non-technical, practical introductions to the concepts and issues relevant to longitudinal analysis. Topics include use of publicly available data sets, weighting and adjusting for complex sampling designs with longitudinal studies, missing data and attrition, measurement issues related to longitudinal research, the use of ANOVA and regression for average change over time, mediation analysis, growth curve models, basic and advanced structural equation models, and survival analysis. An ideal supplement for graduate level courses on data analysis and/or longitudinal modeling taught in psychology, gerontology, public health, human development, family studies, medicine, sociology, social work, and other behavioral, social, and health sciences, this multidisciplinary book will also appeal to researchers in these fields.