Elements of Slow-Neutron Scattering


Book Description

This book provides a comprehensive and up-to-date introduction to the fundamental theory and applications of slow-neutron scattering.







Soft-Matter Characterization


Book Description

This 2-volume set includes extensive discussions of scattering techniques (light, neutron and X-ray) and related fluctuation and grating techniques that are at the forefront of this field. Most of the scattering techniques are Fourier space techniques. Recent advances have seen the development of powerful direct imaging methods such as atomic force microscopy and scanning probe microscopy. In addition, techniques that can be used to manipulate soft matter on the nanometer scale are also in rapid development. These include the scanning probe microscopy technique mentioned above as well as optical and magnetic tweezers.




Structure Analysis by Small-Angle X-Ray and Neutron Scattering


Book Description

Small-angle scattering of X rays and neutrons is a widely used diffraction method for studying the structure of matter. This method of elastic scattering is used in various branches of science and technology, includ ing condensed matter physics, molecular biology and biophysics, polymer science, and metallurgy. Many small-angle scattering studies are of value for pure science and practical applications. It is well known that the most general and informative method for investigating the spatial structure of matter is based on wave-diffraction phenomena. In diffraction experiments a primary beam of radiation influences a studied object, and the scattering pattern is analyzed. In principle, this analysis allows one to obtain information on the structure of a substance with a spatial resolution determined by the wavelength of the radiation. Diffraction methods are used for studying matter on all scales, from elementary particles to macro-objects. The use of X rays, neutrons, and electron beams, with wavelengths of about 1 A, permits the study of the condensed state of matter, solids and liquids, down to atomic resolution. Determination of the atomic structure of crystals, i.e., the arrangement of atoms in a unit cell, is an important example of this line of investigation.




Magnetic Small-Angle Neutron Scattering


Book Description

Magnetic Small-Angle Neutron Scattering provides the first extensive treatment of magnetic small-angle neutron scattering (SANS). The theoretical background required to compute magnetic SANS cross sections and correlation functions related to long-wavelength magnetization structures is laidout. The concepts are scrutinized based on the discussion of experimental neutron data. Regarding prior background knowledge, some familiarity with the basic magnetic interactions and phenomena as well as scattering theory is desired.Besides exposing the different origins of magnetic SANS, and furnishing the basics of the magnetic SANS technique in early chapters, a large part of the book is devoted to a comprehensive treatment of the continuum theory of micromagnetics, as it is relevant for the study of the elastic magneticSANS cross section. Analytical expressions for the magnetization Fourier components allow to highlight the essential features of magnetic SANS and to analyze experimental data both in reciprocal, as well as in real space. Later chapters provide an overview on the magnetic SANS of nanoparticles andso-called complex systems (e.g., ferrofluids, magnetic steels, spin glasses and amorphous magnets). It is this subfield where major progress is expected to be made in the coming years, mainly via the increased usage of numerical micromagnetic simulations (Chapter 7), which is a very promisingapproach for the understanding of the magnetic SANS from systems exhibiting nanoscale spin inhomogeneity.







Quasielastic Neutron Scattering, Principles and Applications in Solid State Chemistry, Biology and Materials Science


Book Description

Written by an author who is widely recognized as one of the specialists of the techniques for the investigation of molecular motions in solids, the subject is given a thorough theoretical treatment and is illustrated with numerous examples of recent experimental applications.




Surface and Interface Chemistry of Clay Minerals


Book Description

Surface and Interface Chemistry of Clay Minerals, Volume 9, delivers a fundamental understanding of the surface and interface chemistry of clay minerals, thus serving as a valuable resource for researchers active in the fields of materials chemistry and sustainable chemistry. Clay minerals, with surfaces ranging from hydrophilic, to hydrophobic, are widely studied and used as adsorbents. Adsorption can occur at the edges and surfaces of clay mineral layers and particles, and in the interlayer region. This diversity in properties and the possibility to tune the surface properties of clay minerals to match the properties of adsorbed molecules is the basis for study. This book requires a fundamental understanding of the surface and interface chemistry of clay minerals, and of the interaction between adsorbate and adsorbent. It is an essential resource for clay scientists, geologists, chemists, physicists, material scientists, researchers, and students. - Presents scientists and engineers with a resource they can rely on for their own research and work involving clay minerals - Includes an in-depth look at ion exchange, adsorption of inorganic and organic molecules, including polymers and proteins, and catalysis occurring at the surfaces of clay minerals - Includes materials chemistry of clay minerals with chiral clay minerals, optical materials and functional films




Neutron Scattering from Magnetic Materials


Book Description

Neutron Scattering from Magnetic Materials is a comprehensive account of the present state of the art in the use of the neutron scattering for the study of magnetic materials. The chapters have been written by well-known researchers who are at the forefront of this field and have contributed directly to the development of the techniques described. Neutron scattering probes magnetic phenomena directly. The generalized magnetic susceptibility, which can be expressed as a function of wave vector and energy, contains all the information there is to know about the statics and dynamics of a magnetic system and this quantity is directly related to the neutron scattering cross section. Polarized neutron scattering techniques raise the sophistication of measurements to even greater levels and gives additional information in many cases. The present book is largely devoted to the application of polarized neutron scattering to the study of magnetic materials. It will be of particular interest to graduate students and researchers who plan to investigate magnetic materials using neutron scattering.· Written by a group of scientist who have contributed directly in developing the techniques described.· A complete treatment of the polarized neutron scattering not available in literature.· Gives practical hits to solve magnetic structure and determine exchange interactions in magnetic solids.· Application of neutron scattering to the study of the novel electronic materials.




Introduction to the Theory of Thermal Neutron Scattering


Book Description

A long-awaited reprint of the book that has established itself as the classic textbook on neutron scattering. It will be an invaluable introductory text for students taking courses on neutron scattering, as well as for researchers and those who would like to deepen their knowledge on the subject through self-study.