Some Problems on Spatial Patterns in Nonequilibrium Systems


Book Description

In this thesis, we study the evolution of spatial patterns in two nonequilibrium systems. In Chapter 1, we study the steady state of a 1-d cellular automata (CA) model of chemical turbulence. Empirically there are two interesting types of space-time patterns (depending on model parameters): a S phase which seems to contain solitons and a T phase which seems to be turbulent. We show that the macroscopic phases can be predicted from the microscopic dynamics. We define the thermodynamic limit of the steady state of CAs and show that the steady state of the S phase is trivial and the T phase exhibits a Gibbs state. We explicitly calculate the T phase steady state and find an approximate form for the energy functional which generates the Gibbs state. We show that there is no adequate characterization of turbulent behavior in CAs and introduce a quantity the "P-entropy" which is positive if the CA patterns are turbulent and zero otherwise. We show the P-entropy for the T phase is positive. In Chapter 2, we consider the consequences of the dynamical scaling hypothesis in phase ordering dynamics. We assume that the dynamics are governed by the Cahn-Hilliard-Cook (CHC) and time-dependent Ginzburg-Landau equations and show that the scaling hypothesis restricts the asymptotic growth rate of the length-scale of the patterns and the small wavevector behavior of the form factor. Specifically, if the form factor $Ssb{k}$($t$) grows as $ksp{delta}$ for small $delta$, then $deltageq$ 4 (for the CHC dynamics). We find that experimental data indicates $delta$ = 4. We also show that the CHC equation is sometimes inadequate for describing phase ordering dynamics. An alternative to the CHC model by Oono, Kitahara and Jasnow is examined. We find that many features of phase ordering dynamics are robust with respect to changing the dynamics.




Pattern Formation and Dynamics in Nonequilibrium Systems


Book Description

An account of how complex patterns form in sustained nonequilibrium systems; for graduate students in biology, chemistry, engineering, mathematics, and physics.




Fluctuations and Sensitivity in Nonequilibrium Systems


Book Description

This volume contains the invited lectures and a selection of the contributed papers and posters of the workshop on "Fluctuations and Sensitivity in Nonequil ibrium Systems", held at the Joe C. Thompson Conference Center, Un i vers ity of Texas at Austin, March 12-16, 1984. The workshop dealt with stochastic phenomena and sensi tivity in nonequilibrium systems from a macroscopic point of view. Durin9 the last few years it has been realized that the role of fluctuations is far less trivial in systems far from equilibrium than in systems under thermodynamic equilibrium condi tions. It was found that random fluctuations often are a determining factor for the state adopted by macroscopic systems and cannot be regarded as secondary effects of minor importance. Further, nonequilibrium systems are also very sensitive to small systematic changes in their environment. The main aims of the workshop were: i) to provide scientists with an occasion to acquaint themselves with the state of the art in fluctuation theory and sensitivity analysis; ii) to provide a forum for the presentation of recent advances in theory and experiment; iii) to bring toge ther theoreticians and experimentalists in order to delineate the major open problems and to formulate strategies to tackle these problems. The organizing committee of the workshop consisted of W. Horsthemke, O.K. Konde pudi, G. Dewel, G. Nicolis, I. Prigogine and L. Reichl.




Applications Of Field Theory Methods In Statistical Physics Of Nonequilibrium Systems


Book Description

This book formulates a unified approach to the description of many-particle systems combining the methods of statistical physics and quantum field theory. The benefits of such an approach are in the description of phase transitions during the formation of new spatially inhomogeneous phases, as well in describing quasi-equilibrium systems with spatially inhomogeneous particle distributions (for example, self-gravitating systems) and metastable states.The validity of the methods used in the statistical description of many-particle systems and models (theory of phase transitions included) is discussed and compared. The idea of using the quantum field theory approach and related topics (path integration, saddle-point and stationary-phase methods, Hubbard-Stratonovich transformation, mean-field theory, and functional integrals) is described in detail to facilitate further understanding and explore more applications.To some extent, the book could be treated as a brief encyclopedia of methods applicable to the statistical description of spatially inhomogeneous equilibrium and metastable particle distributions. Additionally, the general approach is not only formulated, but also applied to solve various practically important problems (gravitating gas, Coulomb-like systems, dusty plasmas, thermodynamics of cellular structures, non-uniform dynamics of gravitating systems, etc.).




Perspectives of Nonlinear Dynamics: Volume 1


Book Description

The dynamics of physical, chemical, biological, or fluid systems generally must be described by nonlinear models, whose detailed mathematical solutions are not obtainable. To understand some aspects of such dynamics, various complementary methods and viewpoints are of crucial importance. In this book the perspectives generated by analytical, topological and computational methods, and interplays between them, are developed in a variety of contexts. This book is a comprehensive introduction to this field, suited to a broad readership, and reflecting a wide range of applications. Some of the concepts considered are: topological equivalence; embeddings; dimensions and fractals; Poincaré maps and map-dynamics; empirical computational sciences vis-á-vis mathematics; Ulam's synergetics; Turing's instability and dissipative structures; chaos; dynamic entropies; Lorenz and Rossler models; predator-prey and replicator models; FPU and KAM phenomena; solitons and nonsolitons; coupled maps and pattern dynamics; cellular automata.




Critical Problems in Physics


Book Description

The past century has seen fantastic advances in physics, from the discovery of the electron, x-rays, and radioactivity, to the era of incredible solid state devices, computers, quarks and leptons, and the standard model. But what of the next? Many scientists think we are on the threshold of an even more exciting new era in which breakthroughs in a startling variety of directions will produce significant changes in our understanding of the natural world. In this book, a group of eminent scientists define and elaborate on these new directions. Ed Witten and Frank Wilczek discuss string theory and the future of particle physics; Donald Perkins describes the search for neutrino oscillations; Alvin Tollestrup reveals dreams of a muon collider at Fermilab to probe the heart of "elementary" particles; and Robert Palmer anticipates a new generation of particle accelerators. Thibault Damour reviews classical gravitation and the relevant new high-precision experiments; Kip Thorne describes the exciting future for gravitational wave astronomy; and Paul Steinhardt examines the recent breakthroughs in observational cosmology and explains what future experiments might reveal. James Langer explores nonequilibrium statistics and relates it to the origins of complexity; Harry Swinney takes an experimentalist's view of the emergence of order in seemingly chaotic systems; and John Hopfield describes an extremely unusual dynamical system--the human brain. Bruce Hillman, M. D., discusses the recent developments in imaging techniques that have brought about outstanding advances in medical diagnostics. T.V. Ramakrishnan looks at high-temperature superconductors, which could eventually revolutionize the solid-state technology on which society is already highly dependent.




Dissipative Structures and Chaos


Book Description

This book consists of two parts, the first dealing with dissipative structures and the second with the structure and physics of chaos. The first part was written by Y. Kuramoto and the second part by H. Mori. Throughout the book, emphasis is laid on fundamental concepts and methods rather than applications, which are too numerous to be treated here. Typical physical examples, however, including nonlinear forced oscilla tors, chemical reactions with diffusion, and Benard convection in horizontal fluid layers, are discussed explicitly. Our consideration of dissipative structures is based on a phenomenolog ical reduction theory in which universal aspects of the phenomena under consideration are emphasized, while the theory of chaos is developed to treat transport phenomena, such as the mixing and diffusion of chaotic orbits, from the viewpoint of the geometrical phase space structure of chaos. The title of the original, Japanese version of the book is Sanitsu Kozo to Kaosu (Dissipative Structures and Chaos). It is part of the Iwanami Koza Gendai no Butsurigaku (Iwanami Series on Modern Physics). The first Japanese edition was published in March 1994 and the second in August 1997. We are pleased that this book has been translated into English and that it can now have an audience outside of Japan. We would like to express our gratitude to Glenn Paquette for his English translation, which has made this book more understandable than the original in many respects.




Los Alamos Science


Book Description




Science At Century's End


Book Description

To most laypersons and scientists, science and progress appear to go hand in hand, yet philosophers and historians of science have long questioned the inevitability of this pairing. As we take leave of a century acclaimed for scientific advances and progress, Science at Century's End, the eighth volume of the Pittsburgh-Konstanz Series in the Philosophy and History of Science, takes the reader to the heart of this important matter. Subtitled Philosophical Questions on the Progress and Limits of Science, this timely volume contains twenty penetrating essays by prominent philosophers and historians who explore and debate the limits of scientific inquiry and their presumed consequences for science in the 21st century.




Chemical Instabilities


Book Description

On March 14-18, 1983 a workshop on "Chemical Instabilities: Applications in Chemistry, Engineering, Geology, and Materials Science" was held in Austin, Texas, U.S.A. It was organized jointly by the University of Texas at Austin and the Universite Libre de Bruxelles and sponsored qy NATO, NSF, the University of Texas at Austin, the International Solvay Institutes and the Ex xon Corporation. The present Volume includes most of the material of the in vited lectures delivered in the workshop as well as material from some posters, whose content was directly related to the themes of the invited lectures. In ,recent years, problems related to the stability and the nonlinear dynamics of nonequilibrium systems invaded a great num ber of fields ranging from abstract mathematics to biology. One of the most striking aspects of this development is that subjects reputed to be "classical" and "well-established" like chemistry, turned out to give rise to a rich variety of phenomena leading to multiple steady states and hysteresis, oscillatory behavior in time, spatial patterns, or propagating wave fronts. The primary objective of the workshop was to bring together researchers actively engaged in fields in which instabilities and nonlinear phenomena similar to those observed in chemistry are of current and primary concern : chemical engineering (especially surface catalysis), combustion (dynamics of ignition, flame sta bili t;y), interfaces (emulsification, dendritic growth), geology (regularly repeated patterns of mineralization 1n a variety of spabe scales), and materials science (dynamical solidification, behavior of matter under irradiation).