Sonic and Photonic Crystals


Book Description

Sonic/phononic crystals termed acoustic/sonic band gap media are elastic analogues of photonic crystals and have also recently received renewed attention in many acoustic applications. Photonic crystals have a periodic dielectric modulation with a spatial scale on the order of the optical wavelength. The design and optimization of photonic crystals can be utilized in many applications by combining factors related to the combinations of intermixing materials, lattice symmetry, lattice constant, filling factor, shape of the scattering object, and thickness of a structural layer. Through the publications and discussions of the research on sonic/phononic crystals, researchers can obtain effective and valuable results and improve their future development in related fields. Devices based on these crystals can be utilized in mechanical and physical applications and can also be designed for novel applications as based on the investigations in this Special Issue.




Photonic Crystals


Book Description

Photonic crystals are a very hot topic in photonics. The basics, fabrication, application and new theoretical developments in the field of photonic crystals are presented in a comprehensive way, together with a survey of the advanced state-of-the-art report.




Photonic Crystals


Book Description

The role of dielectric mirrors is very important in optics. These are used for several purposes like imaging, fabricating laser cavities, and so on. The basis for the propagation of photons in dielectric mediums is the same as electrons in solid crystals. If the electrons can be diffracted by a periodic potential well, photons could also be equally well diffracted by a periodic modulation of the refractive index of the medium. This idea led to the development of many new artificial photonic materials and optical micro- and nanostructures. Since the mechanism of light guidance is essentially due to the microstructural features of the medium, a wide variety of photonic structures, e.g., photonic band-gap fibers in 1D and photonic band-gap crystals in 2D and 3D, can be realized. Photonic Crystals - A Glimpse of the Current Research Trends essentially highlights the recent developments in the arena of photonic crystal research. It is expected to be useful for expert as well as novice researchers; the former group of readers would be abreast of recent research advancements, whereas the latter group would benefit from grasping knowledge delivered by expert scientists.




Optical Properties of Photonic Crystals


Book Description

Deals not only with the properties of the radiation modes inside the crystals but also with their peculiar optical response to external fields. A general theory of linear and nonlinear optical response is presented in a clear and detailed fashion using the Green’s function method. Important recent developments such as the enhancement of stimulated emission, second harmonic generation, quadrature-phase squeezing, and low-threshold lasing are likewise treated in detail and made understandable. Numerical methods are also emphasised. This book provides both introductory knowledge for graduate and undergraduate students and important ideas for researchers.




Photonic Crystal Fibres


Book Description

Photonic Crystal Fibres describes the fundamental properties of the optical waveguides known under the terms of photonic crystal fibres, microstructured fibres, or holey fibres. It outlines how the fibres are designed and fabricated, and how they are treated from a theoretical and numerical point of view. The book presents a detailed description of the different classes of photonic crystal and photonic bandgap fibres, and it broadens out a spectrum of novel applications and new fibre types.




Ferroelectric Crystals for Photonic Applications


Book Description

This book deals with the latest achievements in the field of ferroelectric domain engineering and characterization at micron- and nano-scale dimensions and periods. The book collects the results obtained in recent years by world renowned scientific leaders in the field, thus providing a valid and unique overview of the state-of-the-art. At the same time the book provides a view to future applications of those engineered materials in the field of photonics.




Phononic Crystals


Book Description

Phononic crystals are artificial periodic structures that can alter efficiently the flow of sound, acoustic waves, or elastic waves. They were introduced about twenty years ago and have gained increasing interest since then, both because of their amazing physical properties and because of their potential applications. The topic of phononic crystals stands as the cross-road of physics (condensed matter physics, wave propagation in inhomogeneous and periodic media) and engineering (acoustics, ultrasonics, mechanical engineering, electrical engineering). Phononic crystals cover a wide range of scales, from meter-size periodic structures for sound in air to nanometer-size structures for information processing or thermal phonon control in integrated circuits. Phononic crystals have a definite relation with the topic of photonic crystals in optics. The marriage of phononic and photonic crystals also provides a promising structural basis for enhanced sound and light interaction. As the topic is getting popular, it is nowadays presented and discussed at various international conferences. After the first ten years during which the topic has remained mainly theoretical with a few proof-of-concept demonstrations in the literature, the evolution has been towards applications, instrumentation, and novel designs. The physical explanations for various effects are now well understood and efficient numerical methods and analysis tools have been developed. The book contains a comprehensive set of finite element model (FEM) scripts for solving basic phononic crystal problems. The scripts are short, easy to read, and efficient, allowing the reader to generate for him(her)self band structures for 2D and 3D phononic crystals, to compute Bloch waves, waveguide and cavity modes, and more.




Foundations of Photonic Crystal Fibres


Book Description

This book aims to provide expert guidance to researchers experienced in classical technology, as well as to those new to the field. A variety of perspectives on Photonic Crystal Fibres (PCFs) is presented together with a thorough treatment of the theoretical, physical and mathematical foundations of the optics of PCFs. The range of expertise of the authors is reflected in the depth of coverage, which will benefit those approaching the subject for a variety of reasons and from diverse backgrounds. The study of PCFs enables us to understand how best to optimize their applications in communication or sensing, as devices confining light via new mechanisms (such as photonic bandgap effects). It also assists us in understanding them as physically important structures which require a sophisticated mathematical analysis when considering questions related to the definition of effective refractive index, and the link between large finite systems and infinite periodic systems. This book offers access to essential information on foundation concepts of a dynamic and evolving subject. It is ideal for those who wish to explore further an emerging and important branch of optics and photonics.




Advances in Photonic Crystals


Book Description

This book collects chapters on different theoretical and experimental aspects of photonics crystals for Nanophotonics applications. It is divided in two parts - a theoretical section and an experimental and applicative section. The first part includes chapters developing several numerical methods for analysis and design of photonic crystal devices, such as 2D ring resonators for filters, single and coupled nanobeam cavities, birefringence in photonic crystal cavities, threshold analysis in photonic crystal lasers, gap solitons in photonic crystals, novel photonic atolls, dynamic characteristics of photonic crystal filters. The second part focuses on some aspects of photonic crystals fabrication and relevant applications, such as nitrogen defect technology in diamond, silicon nitride free standing membranes, photonic crystals structures in silicon, photonic crystals for optical sensing.