Springer Handbook of Acoustics


Book Description

This is an unparalleled modern handbook reflecting the richly interdisciplinary nature of acoustics edited by an acknowledged master in the field. The handbook reviews the most important areas of the subject, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest research and applications are incorporated throughout, including computer recognition and synthesis of speech, physiological acoustics, diagnostic imaging and therapeutic applications and acoustical oceanography. An accompanying CD-ROM contains audio and video files.




Musical Sound, Instruments, and Equipment


Book Description

Musical Sound, Instruments, and Equipment' offers a basic understanding of sound, musical instruments and music equipment, geared towards a general audience and non-science majors. The book begins with an introduction of the fundamental properties of sound waves, and the perception of the characteristics of sound. The relation between intensity and loudness, and the relation between frequency and pitch are discussed. The basics of propagation of sound waves, and the interaction of sound waves with objects and structures of various sizes are introduced. Standing waves, harmonics and resonance are explained in simple terms, using graphics that provide a visual understanding.




Propagation of Sound in Porous Media


Book Description

This book has grown out of the research activities of the author in the fields of sound propagation in porous media and modelling of acoustic materials. It is assumed that the reader has a background of advanced calculus, including an introduction to differential equations, complex variables and matrix algebra. A prior exposure to theory of elasticity would be advantageous. Chapters 1-3 deal with sound propagation of plane waves in solids and fluids, and the topics of acoustic impedance and reflection coefficient are given a large emphasis. The topic of flow resistivity is presented in Chapter 2. Chapter 4 deals with sound propagation in porous materials having cylindrical pores. The topics of effective density, and of tortuosity, are presented. The thermal exchanges between the frame and the fluid, and the behaviour of the bulk modulus of the fluid, are described in this simple context. Chapter 5 is concerned with sound propagation in other porous materials, and the recent notions of characteristic dimensions, which describe thermal exchanges and the viscous forces at high frequencies, are introduced. In Chapter 6, the case of porous media having an elastic frame is considered in the context of Biot theory, where new topics described in Chapter 5 have been included.




Coastal Acoustic Tomography


Book Description

Coastal Acoustic Tomography begins with the specifics required for designing a Coastal Acoustic Tomography (CAT) experiment and operating the CAT system in coastal seas. Following sections discuss the procedure for data analyses and various application examples of CAT to coastal/shallow seas (obtained in various locations). These sections are broken down into four kinds of methods: horizontal-slice inversion, vertical-slice inversion, modal expansion method and data assimilation. This book emphasizes how dynamic phenomena occurring in coastal/shallow seas can be analyzed using the standard method of inversion and data assimilation. The book is relevant for physical oceanographers, ocean environmentalists and ocean dynamists, focusing on the event being observed rather than the intrinsic details of observational processes. Application examples of successful dynamic phenomena measured by coastal acoustic tomography are also included. - Provides the information needed for researchers and graduate students in physical oceanography, ocean-fluid dynamics and ocean environments to apply Ocean Acoustic Tomography (OAT) to their own fields - Presents the benefits of using acoustic tomography, including less disturbance to aquatic environments vs. other monitoring methods - Includes the assimilation of CAT data into a coastal sea circulation model, a powerful tool to predict coastal-sea environmental changes




Applied Underwater Acoustics


Book Description

Applied Underwater Acoustics meets the needs of scientists and engineers working in underwater acoustics and graduate students solving problems in, and preparing theses on, topics in underwater acoustics. The book is structured to provide the basis for rapidly assimilating the essential underwater acoustic knowledge base for practical application to daily research and analysis. Each chapter of the book is self-supporting and focuses on a single topic and its relation to underwater acoustics. The chapters start with a brief description of the topic's physical background, necessary definitions, and a short description of the applications, along with a roadmap to the chapter. The subtopics covered within individual subchapters include most frequently used equations that describe the topic. Equations are not derived, rather, assumptions behind equations and limitations on the applications of each equation are emphasized. Figures, tables, and illustrations related to the sub-topic are presented in an easy-to-use manner, and examples on the use of the equations, including appropriate figures and tables are also included. - Provides a complete and up-to-date treatment of all major subjects of underwater acoustics - Presents chapters written by recognized experts in their individual field - Covers the fundamental knowledge scientists and engineers need to solve problems in underwater acoustics - Illuminates, in shorter sub-chapters, the modern applications of underwater acoustics that are described in worked examples - Demands no prior knowledge of underwater acoustics, and the physical principles and mathematics are designed to be readily understood by scientists, engineers, and graduate students of underwater acoustics - Includes a comprehensive list of literature references for each chapter




Acoustics and Psychoacoustics


Book Description

The acoustics of a space can have a real impact on the sounds you create and capture. Acoustics and Psychoacoustics, Fifth Edition provides supportive tools and exercises to help you understand how music sounds and behaves in different spaces, whether during a performance or a recording, when planning a control room or listening space, and how it is perceived by performers, listeners, and recording engineers. With their clear and simple style, Howard and Angus cover both theory and practice by addressing the science of sound engineering and music production, the acoustics of musical instruments, the ways in which we hear musical sounds, the underlying principles of sound processing, and the application of these concepts to music spaces to create professional sound. This new edition is fully revised to reflect new psychoacoustic information related to timbre and temporal perception, including an updated discussion of vocal fold vibration principles, samples of recent acoustic treatments, and a description of variable acoustics in spaces, as well as coverage of the environment’s effect on production listening, sonification, and other topics. Devoted to the teaching of musical understanding, an accompanying website (www.routledge.com/cw/howard) features various audio clips, tutorial sheets, questions and answers, and trainings that will take your perception of sound to the next level. This book will help you: Gain a basic grounding in acoustics and psychoacoustics with respect to music audio technology systems Incorporate knowledge of psychoacoustics in future music technology system designs as appropriate Understand how we hear pitch, loudness, and timbre Learn to influence the acoustics of an enclosed space through designed physical modifications




Acoustics


Book Description

This corrected version of the landmark 1981 textbook introduces the physical principles and theoretical basis of acoustics with deep mathematical rigor, concentrating on concepts and points of view that have proven useful in applications such as noise control, underwater sound, architectural acoustics, audio engineering, nondestructive testing, remote sensing, and medical ultrasonics. Since its publication, this text has been used as part of numerous acoustics-related courses across the world, and continues to be used widely today. During its writing, the book was fine-tuned according to insights gleaned from a broad range of classroom settings. Its careful design supports students in their pursuit of a firm foundation while allowing flexibility in course structure. The book can easily be used in single-term or full-year graduate courses and includes problems and answers. This rigorous and essential text is a must-have for any practicing or aspiring acoustician.




Sound: A Very Short Introduction


Book Description

Sound is integral to how we experience the world, in the form of noise as well as music. But what is sound? What is the physical basis of pitch and harmony? And how are sound waves exploited in musical instruments? In this Very Short Introduction Mike Goldsmith looks at the science of sound and explores sound in different contexts, covering the audible and inaudible, sound underground and underwater, accoustic and electric, and hearing in humans and animals. He also considers the problem of sound out of place - noise and its reduction. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.




The Theory of Sound


Book Description




An Introduction to Boundary Layer Meteorology


Book Description

Part of the excitement in boundary-layer meteorology is the challenge associated with turbulent flow - one of the unsolved problems in classical physics. An additional attraction of the filed is the rich diversity of topics and research methods that are collected under the umbrella-term of boundary-layer meteorology. The flavor of the challenges and the excitement associated with the study of the atmospheric boundary layer are captured in this textbook. Fundamental concepts and mathematics are presented prior to their use, physical interpretations of the terms in equations are given, sample data are shown, examples are solved, and exercises are included. The work should also be considered as a major reference and as a review of the literature, since it includes tables of parameterizatlons, procedures, filed experiments, useful constants, and graphs of various phenomena under a variety of conditions. It is assumed that the work will be used at the beginning graduate level for students with an undergraduate background in meteorology, but the author envisions, and has catered for, a heterogeneity in the background and experience of his readers.