Nitrogen Fixation in Agriculture, Forestry, Ecology, and the Environment


Book Description

Sustainability has a major part to play in the global challenge of continued development of regions, countries, and continents all around the World and biological nitrogen fixation has a key role in this process. This volume begins with chapters specifically addressing crops of major global importance, such as soybeans, rice, and sugar cane. It continues with a second important focus, agroforestry, and describes the use and promise of both legume trees with their rhizobial symbionts and other nitrogen-fixing trees with their actinorhizal colonization. An over-arching theme of all chapters is the interaction of the plants and trees with microbes and this theme allows other aspects of soil microbiology, such as interactions with arbuscular mycorrhizal fungi and the impact of soil-stress factors on biological nitrogen fixation, to be addressed. Furthermore, a link to basic science occurs through the inclusion of chapters describing the biogeochemically important nitrogen cycle and its key relationships among nitrogen fixation, nitrification, and denitrification. The volume then provides an up-to-date view of the production of microbial inocula, especially those for legume crops.




Soybean Inoculation Studies


Book Description




A Comprehensive Survey of International Soybean Research - Genetics, Physiology, Agronomy and Nitrogen Relationships


Book Description

Soybean is the most important oilseed and livestock feed crop in the world. These dual uses are attributed to the crop's high protein content (nearly 40% of seed weight) and oil content (approximately 20%); characteristics that are not rivaled by any other agronomic crop. Across the 10-year period from 2001 to 2010, world soybean production increased from 168 to 258 million metric tons (54% increase). Against the backdrop of soybean's striking ascendancy is increased research interest in the crop throughout the world. Information in this book presents a comprehensive view of research efforts in genetics, plant physiology, agronomy, agricultural economics, and nitrogen relationships that will benefit soybean stakeholders and scientists throughout the world. We hope you enjoy the book.




Advances in Biology and Ecology of Nitrogen Fixation


Book Description

Biological nitrogen fixation has essential role in N cycle in global ecosystem. Several types of nitrogen fixing bacteria are recognized: the free-living bacteria in soil or water; symbiotic bacteria making root nodules in legumes or non-legumes; associative nitrogen fixing bacteria that resides outside the plant roots and provides fixed nitrogen to the plants; endophytic nitrogen fixing bacteria living in the roots, stems and leaves of plants. In this book there are 11 chapters related to biological nitrogen fixation, regulation of legume-rhizobium symbiosis, and agriculture and ecology of biological nitrogen fixation, including new models for autoregulation of nodulation in legumes, endophytic nitrogen fixation in sugarcane or forest trees, etc. Hopefully, this book will contribute to biological, ecological, and agricultural sciences.




First International Meeting on Microbial Phosphate Solubilization


Book Description

In 2002, sixty international specialists met to discuss problems of high P-unavailability as a soil nutrient for crops, and the hazards of increased phosphate input to aquatic habitats from industrial and mining activities, sewage disposal, detergents, and other sources. Among the presentations were updated solutions to enhance P-uptake by plants, bioremediation potential in the rehabilitation of ecosystems, taxonomic characterization interactions with mycorrizae, the physiological and molecular basis of PSM, and more.




Soybean


Book Description

Plants are important for a permanent ecosystem, because in the ecological pyramid plants support all the other living organisms at the base. Very important organization is thought to be the integral process of resource, transport, partitioning, metabolism, and production, which involves yield, biomass, and productivity in plants. Accordingly, it is important to obtain more information about the knowledge concerning yield, biomass, and productivity in plants. Soybean is one of the main crops largely contributing to our life, which is thought to be connected to our ecosystem through the above-mentioned integral process. This book focuses on the soybean, and reviews and research concerning the yield, biomass, and productivity of soybean are presented herein. This text updates the book published in 2017. Although there are many difficulties, the main aim of this book is to present a basis for the above-mentioned integral processes of resource, transport, partitioning, metabolism, and production, which involves yield, biomass, and productivity in plants (soybean), and to understand what supports this basis and the integral process. It is hoped that this and the preceding book will be essential reads.




Handbook for Rhizobia


Book Description

Rhizobia are bacteria which inhabit the roots of plants in the pea family and "fix" atmospheric nitrogen for plant growth. They are thus of enormous economic importance internationally and the subject of intense research interest. Handbook for Rhizobia is a monumental book of practical methods for working with these bacteria and their plant hosts. Topics include the general microbiological properties of rhizobia and their identification, their potential as symbionts, methods for inoculating rhizobia onto plants, and molecular genetics methods for Rhizobium in the laboratory. The book will be invaluable to Rhizobium scientists, soil microbiologists, field and laboratory researchers at agricultural research centers, agronomists, and crop scientists.




Abiotic and Biotic Stresses in Soybean Production


Book Description

Abiotic and Biotic Stresses in Soybean Production: Soybean Production Volume One presents the important results of research in both field and greenhouse conditions that guide readers to effectively manage the chemical, physical, and biological factors that can put soybean production at risk. Including the latest in genetics, signaling, and biotechnology, the book identifies these types of stresses, their causes, and means of avoiding, then addresses existing stresses to provide a comprehensive overview of key production yield factors. By presenting important insights into the historical and emerging uses for soybean, the book educates readers on the factors for consideration as new uses are developed. It is an ideal complement to volume two, Environmental Stress Conditions in Soybean Production, that work together to provide valuable insights into crop protection. - Presents insights for the successful production of soybean based on chemical, physical and biologic challenges - Includes the latest specifics on soybean properties, growth, and production, including responses to different stresses and their alleviation methods - Offers recent advancements related to the process of N fixation and rhizobium, including signaling pathways and their practical use - Explores the production of rhizobium inoculums at large-scale levels




Legume Inoculation


Book Description




Biological Nitrogen Fixation for Sustainable Agriculture


Book Description

Chemical fertilizers have had a significant impact on food production in the recent past, and are today an indispensable part of modern agriculture. On the other hand, the oil crisis of the 1970s and the current Middle East problems are constant reminders of the vulnerability of our fossil fuel dependent agriculture. There are vast areas of the developing world where N fertilizers are neither available nor affordable and, in most of these countries, balance of payment problems have resulted in the removal of N fertilizer subsidies. The external costs of environmental degradation and human health far exceed economic concerns. Input efficiency of N fertilizer is one of the lowest and, in turn, contributes substantially to environmental pollution. Nitrate in ground and surface waters and the threat to the stability of the ozone layer from gaseous oxides of nitrogen are major health and environmental concerns. The removal of large quantities of crop produce from the land also depletes soil of its native N reserves. Another concern is the decline in crop yields under continuous use of N fertilizers. These economic, environmental and production considerations dictate that biological alternatives which can augment, and in some cases replace, N fertilizers must be exploited. Long-term sustainability of agricultural systems must rely on the use and effective management of internal resources. The process of biological nitrogen fixation offers and economically attractive and ecologically sound means of reducing external nitrogen input and improving the quality and quantity of internal resources. In this book, we outline sustainability issues that dictate an increased use of biological nitrogen fixation and the constraints on its optimal use in agriculture.