Intelligent Computing Everywhere


Book Description

This book reflects the current perception in various fields that modern computing applications are becoming increasingly challenged in terms of complexity and intelligence. It investigates the relevance and relationship artificial intelligence maintains with "modern strands of computing". These consist of pervasive computing and ambient intelligence, bioinformatics, neuroinformatics, computing and the mind, non-classical computing and novel computing models, as well as DNA computing and quantum computing.







Handbook of Research on Artificial Intelligence Applications in the Aviation and Aerospace Industries


Book Description

With the emergence of smart technology and automated systems in today’s world, artificial intelligence (AI) is being incorporated into an array of professions. The aviation and aerospace industry, specifically, is a field that has seen the successful implementation of early stages of automation in daily flight operations through flight management systems and autopilot. However, the effectiveness of aviation systems and the provision of flight safety still depend primarily upon the reliability of aviation specialists and human decision making. The Handbook of Research on Artificial Intelligence Applications in the Aviation and Aerospace Industries is a pivotal reference source that explores best practices for AI implementation in aviation to enhance security and the ability to learn, improve, and predict. While highlighting topics such as computer-aided design, automated systems, and human factors, this publication explores the enhancement of global aviation security as well as the methods of modern information systems in the aeronautics industry. This book is ideally designed for pilots, scientists, engineers, aviation operators, air crash investigators, teachers, academicians, researchers, and students seeking current research on the application of AI in the field of aviation.







Artificial Intelligence in Healthcare


Book Description

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data




Deploying Machine Learning


Book Description

Increasingly, business leaders and managers recognize that machine learning offers their companies immense opportunities for competitive advantage. But most discussions of machine learning are intensely technical or academic, and don't offer practical information leaders can use to identify, evaluate, plan, or manage projects. Deploying Machine Learning fills that gap, helping them clarify exactly how machine learning can help them, and collaborate with technologists to actually apply it successfully. You'll learn: What machine learning is, how it compares to "big data" and "artificial intelligence," and why it's suddenly so important What machine learning can do for you: solutions for computer vision, natural language processing, prediction, and more How to use machine learning to solve real business problems -- from reducing costs through improving decision-making and introducing new products Separating hype from reality: identifying pitfalls, limitations, and misconceptions upfront Knowing enough about the technology to work effectively with your technical team Getting the data right: sourcing, collection, governance, security, and culture Solving harder problems: exploring deep learning and other advanced techniques Understanding today's machine learning software and hardware ecosystem Evaluating potential projects, and addressing workforce concerns Staffing your project, acquiring the right tools, and building a workable project plan Interpreting results -- and building an organization that can increasingly learn from data Using machine learning responsibly and ethically Preparing for tomorrow's advances The authors conclude with five chapter-length case studies: image, text, and video analysis, chatbots, and prediction applications. For each, they don't just present results: they also illuminate the process the company undertook, and the pitfalls it overcame along the way.




Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.




Applications of Artificial Intelligence for Smart Technology


Book Description

As global communities are attempting to transform into more efficient and technologically-advanced metropolises, artificial intelligence (AI) has taken a firm grasp on various professional fields. Technology used in these industries is transforming by introducing intelligent techniques including machine learning, cognitive computing, and computer vision. This has raised significant attention among researchers and practitioners on the specific impact that these smart technologies have and what challenges remain. Applications of Artificial Intelligence for Smart Technology is a pivotal reference source that provides vital research on the implementation of advanced technological techniques in professional industries through the use of AI. While highlighting topics such as pattern recognition, computational imaging, and machine learning, this publication explores challenges that various fields currently face when applying these technologies and examines the future uses of AI. This book is ideally designed for researchers, developers, managers, academicians, analysts, students, and practitioners seeking current research on the involvement of AI in professional practices.




Linguistic Geometry


Book Description

Linguistic Geometry: From Search to Construction is the first book of its kind. Linguistic Geometry (LG) is an approach to the construction of mathematical models for large-scale multi-agent systems. A number of such systems, including air/space combat, robotic manufacturing, software re-engineering and Internet cyberwar, can be modeled as abstract board games. These are games with moves that can be represented by the movement of abstract pieces over locations on an abstract board. The purpose of LG is to provide strategies to guide the games' participants to their goals. Traditionally, discovering such strategies required searches in giant game trees. These searches are often beyond the capacity of modern and even conceivable future computers. LG dramatically reduces the size of the search trees, making the problems computationally tractable. LG provides a formalization and abstraction of search heuristics used by advanced experts including chess grandmasters. Essentially, these heuristics replace search with the construction of strategies. To formalize the heuristics, LG employs the theory of formal languages (i.e. formal linguistics), as well as certain geometric structures over an abstract board. The new formal strategies solve problems from different domains far beyond the areas envisioned by the experts. For a number of these domains, Linguistic Geometry yields optimal solutions.




Computer Intensive Methods in Control and Signal Processing


Book Description

Due to the rapid increase in readily available computing power, a corre sponding increase in the complexity of problems being tackled has occurred in the field of systems as a whole. A plethora of new methods which can be used on the problems has also arisen with a constant desire to deal with more and more difficult applications. Unfortunately by increasing the ac curacy in models employed along with the use of appropriate algorithms with related features, the resultant necessary computations can often be of very high dimension. This brings with it a whole new breed of problem which has come to be known as "The Curse of Dimensionality" . The expression "Curse of Dimensionality" can be in fact traced back to Richard Bellman in the 1960's. However, it is only in the last few years that it has taken on a widespread practical significance although the term di mensionality does not have a unique precise meaning and is being used in a slightly different way in the context of algorithmic and stochastic complex ity theory or in every day engineering. In principle the dimensionality of a problem depends on three factors: on the engineering system (subject), on the concrete task to be solved and on the available resources. A system is of high dimension if it contains a lot of elements/variables and/or the rela tionship/connection between the elements/variables is complicated.