Spacetime and Geometry


Book Description

An accessible introductory textbook on general relativity, covering the theory's foundations, mathematical formalism and major applications.




The Geometry of Spacetime


Book Description

Hermann Minkowski recast special relativity as essentially a new geometric structure for spacetime. This book looks at the ideas of both Einstein and Minkowski, and then introduces the theory of frames, surfaces and intrinsic geometry, developing the main implications of Einstein's general relativity theory.




Spacetime


Book Description

One of the most of exciting aspects is the general relativity pred- tion of black holes and the Such Big Bang. predictions gained weight the theorems through Penrose. singularity pioneered In various by te- books on theorems general relativity singularity are and then presented used to that black holes exist and that the argue universe started with a To date what has big been is bang. a critical of what lacking analysis these theorems predict-’ We of really give a proof a typical singul- theorem and this ity use theorem to illustrate problems arising through the of possibilities violations" and "causality weak "shell very crossing These singularities". add to the problems weight of view that the point theorems alone singularity are not sufficient to the existence of predict physical singularities. The mathematical theme of the book In order to both solid gain a of and intuition understanding good for any mathematical theory, one,should to realise it as model of try a a fam- iar non-mathematical theories have had concept. Physical an especially the important on of and impact development mathematics, conversely various modern theories physical rather require sophisticated mathem- ics for their formulation. both and mathematics Today, physics are so that it is often difficult complex to master the theories in both very s- in the of jects. However, case differential pseudo-Riemannian geometry or the general relativity between and mathematics relationship physics is and it is therefore especially close, to from interd- possible profit an ciplinary approach.




Spacetime, Geometry and Gravitation


Book Description

This is an introductory book on the general theory of relativity based partly on lectures given to students of M.Sc. Physics at my university. The book is divided into three parts. The ?rst part is a preliminary course on general relativity with minimum preparation. The second part builds the ma- ematical background and the third part deals with topics where mathematics developed in the second part is needed. The ?rst chapter gives a general background and introduction. This is f- lowed by an introduction to curvature through Gauss’ Theorema Egregium. This theorem expresses the curvature of a two-dimensional surface in terms of intrinsic quantitiesrelatedtothein?nitesimaldistancefunctiononthesurface.Thestudent isintroducedtothemetrictensor,Christo?elsymbolsandRiemanncurvaturet- sor by elementary methods in the familiar and visualizable case of two dimensions. This early introduction to geometric quantities equips a student to learn simpler topics in general relativity like the Newtonian limit, red shift, the Schwarzschild solution, precession of the perihelion and bending of light in a gravitational ?eld. Part II (chapters 5 to 10) is an introduction to Riemannian geometry as - quired by general relativity. This is done from the beginning, starting with vectors and tensors. I believe that students of physics grasp physical concepts better if they are not shaky about the mathematics involved.




Curvature of Space and Time, with an Introduction to Geometric Analysis


Book Description

This book introduces advanced undergraduates to Riemannian geometry and mathematical general relativity. The overall strategy of the book is to explain the concept of curvature via the Jacobi equation which, through discussion of tidal forces, further helps motivate the Einstein field equations. After addressing concepts in geometry such as metrics, covariant differentiation, tensor calculus and curvature, the book explains the mathematical framework for both special and general relativity. Relativistic concepts discussed include (initial value formulation of) the Einstein equations, stress-energy tensor, Schwarzschild space-time, ADM mass and geodesic incompleteness. The concluding chapters of the book introduce the reader to geometric analysis: original results of the author and her undergraduate student collaborators illustrate how methods of analysis and differential equations are used in addressing questions from geometry and relativity. The book is mostly self-contained and the reader is only expected to have a solid foundation in multivariable and vector calculus and linear algebra. The material in this book was first developed for the 2013 summer program in geometric analysis at the Park City Math Institute, and was recently modified and expanded to reflect the author's experience of teaching mathematical general relativity to advanced undergraduates at Lewis & Clark College.




The Geometry of Minkowski Spacetime


Book Description

This mathematically rigorous treatment examines Zeeman's characterization of the causal automorphisms of Minkowski spacetime and the Penrose theorem concerning the apparent shape of a relativistically moving sphere. Other topics include the construction of a geometric theory of the electromagnetic field; an in-depth introduction to the theory of spinors; and a classification of electromagnetic fields in both tensor and spinor form. Appendixes introduce a topology for Minkowski spacetime and discuss Dirac's famous "Scissors Problem." Appropriate for graduate-level courses, this text presumes only a knowledge of linear algebra and elementary point-set topology. 1992 edition. 43 figures.




The Biggest Ideas in the Universe


Book Description

INSTANT NEW YORK TIMES BESTSELLER “Most appealing... technical accuracy and lightness of tone... Impeccable.”—Wall Street Journal “A porthole into another world.”—Scientific American “Brings science dissemination to a new level.”—Science The most trusted explainer of the most mind-boggling concepts pulls back the veil of mystery that has too long cloaked the most valuable building blocks of modern science. Sean Carroll, with his genius for making complex notions entertaining, presents in his uniquely lucid voice the fundamental ideas informing the modern physics of reality. Physics offers deep insights into the workings of the universe but those insights come in the form of equations that often look like gobbledygook. Sean Carroll shows that they are really like meaningful poems that can help us fly over sierras to discover a miraculous multidimensional landscape alive with radiant giants, warped space-time, and bewilderingly powerful forces. High school calculus is itself a centuries-old marvel as worthy of our gaze as the Mona Lisa. And it may come as a surprise the extent to which all our most cutting-edge ideas about black holes are built on the math calculus enables. No one else could so smoothly guide readers toward grasping the very equation Einstein used to describe his theory of general relativity. In the tradition of the legendary Richard Feynman lectures presented sixty years ago, this book is an inspiring, dazzling introduction to a way of seeing that will resonate across cultural and generational boundaries for many years to come.




General Relativity


Book Description

"Wald's book is clearly the first textbook on general relativity with a totally modern point of view; and it succeeds very well where others are only partially successful. The book includes full discussions of many problems of current interest which are not treated in any extant book, and all these matters are considered with perception and understanding."—S. Chandrasekhar "A tour de force: lucid, straightforward, mathematically rigorous, exacting in the analysis of the theory in its physical aspect."—L. P. Hughston, Times Higher Education Supplement "Truly excellent. . . . A sophisticated text of manageable size that will probably be read by every student of relativity, astrophysics, and field theory for years to come."—James W. York, Physics Today




The Large Scale Structure of Space-Time


Book Description

Einstein's General Theory of Relativity leads to two remarkable predictions: first, that the ultimate destiny of many massive stars is to undergo gravitational collapse and to disappear from view, leaving behind a 'black hole' in space; and secondly, that there will exist singularities in space-time itself. These singularities are places where space-time begins or ends, and the presently known laws of physics break down. They will occur inside black holes, and in the past are what might be construed as the beginning of the universe. To show how these predictions arise, the authors discuss the General Theory of Relativity in the large. Starting with a precise formulation of the theory and an account of the necessary background of differential geometry, the significance of space-time curvature is discussed and the global properties of a number of exact solutions of Einstein's field equations are examined. The theory of the causal structure of a general space-time is developed, and is used to study black holes and to prove a number of theorems establishing the inevitability of singualarities under certain conditions. A discussion of the Cauchy problem for General Relativity is also included in this 1973 book.




Relativity and Geometry


Book Description

Early in this century, it was shown that the new non-Newtonian physics -- known as Einstein's Special Theory of Relativity -- rested on a new, non-Euclidean geometry, which incorporated time and space into a unified "chronogeometric" structure. This high-level study elucidates the motivation and significance of the changes in physical geometry brought about by Einstein, in both the first and the second phase of Relativity. After a discussion of Newtonian principles and 19th-century views on electrodynamics and the aether, the author offers illuminating expositions of Einstein's electrodynamics of moving bodies, Minkowski spacetime, Einstein's quest for a theory of gravity, gravitational geometry, the concept of simultaneity, time and causality and other topics. An important Appendix -- designed to define spacetime curvature -- considers differentiable manifolds, fiber bundles, linear connections and useful formulae. Relativity continues to be a major focus of interest for physicists, mathematicians and philosophers of science. This highly regarded work offers them a rich, "historico-critical" exposition -- emphasizing geometrical ideas -- of the elements of the Special and General Theory of Relativity.