Spacecraft Power Technologies


Book Description

Spacecraft Power Technologies is the first comprehensive text devoted to the technologies critical to the development of spacecraft electrical power systems. The science and engineering of solar, chemical, and nuclear systems are fully examined together with the constraints imposed by the space and thermal environments in which the systems must operate. Details of present technology and the history that led to the current state-of-the-art are presented at a level appropriate for the student as a textbook or the practicing engineer as a reference.




Spacecraft Power System Technologies


Book Description

This book provides an introduction to the main design principles, methods, procedures, and development trends in spacecraft power systems. It is divided into nine chapters, the first of which covers the classification and main components of primary power system design and power distribution system design. In turn, Chapters 2 to 4 focus on the spacecraft power system design experience and review the latest typical design cases concerning spacecraft power systems in China. More specifically, these chapters also introduce readers to the topological structure and key technologies used in spacecraft power systems. Chapters 5 to 7 address power system reliability and safety design, risk analysis and control, and in-orbit management in China’s spacecraft engineering projects. The book’s closing chapters provide essential information on new power systems and technologies, such as space nuclear power, micro- and nano-satellite power systems, and space energy interconnection systems. An outlook on future development trends rounds out the coverage.







Spacecraft Power Systems


Book Description

This second edition of Spacecraft Power Systems is a comprehensive coverage of the fundamentals, design trades, components, controls, and operations of spacecraft power systems based on the real-world design and operations of spacecraft that have successfully flown for decades. It also includes emerging high-voltage, high-power systems for in-space propulsion for interplanetary travel. With new and updated chapters, sections, and discussions, the second edition covers up-to-date high-voltage, MW-scale electric propulsion, updated PV and battery systems, spacecraft power components, power electronics, and their architectures and operations. This book also presents the latest in spacecraft design processes and trades, controls, operations, and protection. This book is intended for senior undergraduate and graduate students in mechanical, aerospace, and electrical engineering taking courses in Space Systems, Space Engineering, and Spacecraft Power Systems, as well as for practicing aerospace and power engineers and managers who are designing, developing, and operating spacecraft power systems.




Advanced Power Sources for Space Missions


Book Description

"Star Wars"â€"as the Strategic Defense Initiative (SDI) is dubbedâ€"will require reliable sources of immense amounts of energy to power such advanced weapons as lasers and particle beams. Are such power sources available? This study says no, not yetâ€"and points the way toward the kind of energy research and development that is needed to power SDI. Advanced Power Sources for Space Missions presents a comprehensive and objective view of SDI's unprecedented power requirements and the opportunities we have to meet them in a cost-effective manner.
















The Case for Space Solar Power


Book Description

This book makes the case for Space Solar Power; recounting the history of this fascinating concept and summarizing the many different ways in which it might be accomplished. The book describes in detail a highly promising concept - SPS-ALPHA (Solar Power Satellite by means of Arbitrarily Large Phased Array) - and presents a business case comprising applications in space and markets on Earth. The book explains how it is possible to begin now with technologies that are already at hand, while developing the more advanced technologies that will be needed to deliver power economically to markets on Earth. The Case for Space Solar Power concludes by laying out a path forward that is both achievable and affordable: within a dozen years or less, the first multi-megawatt pilot plant could be in operation. Getting started could cost less than $10 million over the first 2 years, less than $100 million over the next half dozen years. Given that space solar power would transform our future in space, and might provide a new source of virtually limitless and sustainable energy to markets across the world, the book poses the question, "Why wouldn't we pursue space solar power?"