Spark Plasma Sintering of Materials


Book Description

This book describes spark plasma sintering (SPS) in depth. It addresses fundamentals and material-specific considerations, techniques, and applications across a broad spectrum of materials. The book highlights methods used to consolidate metallic or ceramic particles in very short times. It highlights the production of complex alloys and metal matrix composites with enhanced mechanical and wear properties. Emphasis is placed on the speed of the sintering processes, uniformity in product microstructure and properties, reduced grain growth, the compaction and sintering of materials in one processing step, various materials processing, and high energy efficiency. Current and potential applications in space science and aeronautics, automation, mechanical engineering, and biomedicine are addressed throughout the book.




Spark Plasma Sintering


Book Description

Spark Plasma Sintering: Current Status, New Developments and Challenges looks at the progress made in the field of SPS. It includes a review of the scientific mechanisms, materials synthesis and industry applications for this processing technique. Chapters are written by leading experts in the field, encompassing topics surrounding the densification mechanism and microstructure evolution, the classification of high-performance materials, a review of numerical simulation, discussions of new technology advances, such as HP-SPS, flash sintering and related challenges. This book will be useful for researchers, engineers and students within the materials science and engineering fields.




Sintering Applications


Book Description

Sintering is one of the final stages of ceramics fabrication and is used to increase the strength of the compacted material. In the Sintering of Ceramics section, the fabrication of electronic ceramics and glass-ceramics were presented. Especially dielectric properties were focused on. In other chapters, sintering behaviour of ceramic tiles and nano-alumina were investigated. Apart from oxides, the sintering of non-oxide ceramics was examined. Sintering the metals in a controlled atmosphere furnace aims to bond the particles together metallurgically. In the Sintering of Metals section, two sections dealt with copper containing structures. The sintering of titanium alloys is another topic focused in this section. The chapter on lead and zinc covers the sintering in the field of extractive metallurgy. Finally two more chapter focus on the basics of sintering,i.e viscous flow and spark plasma sintering.




Field-Assisted Sintering


Book Description

This book represents the first ever scientific monograph including an in-depth analysis of all major field-assisted sintering techniques. Until now, the electromagnetic field-assisted technologies of materials processing were lacking a systematic and generalized description in one fundamental publication; this work promotes the development of generalized concepts and of comparative analyses in this emerging area of materials fabrication. This book describes modern technologies for the powder processing-based fabrication of advanced materials. New approaches for the development of well-tailored and stable structures are thoroughly discussed. Since the potential of traditional thermo-mechanical methods of material treatment is limited due to inadequate control during processing, the book addresses ways to more accurately control the resultant material's structure and properties by an assisting application of electro-magnetic fields. The book describes resistance sintering, high-voltage consolidation, sintering by low-voltage electric pulses (including spark plasma sintering), flash sintering, microwave sintering, induction heating sintering, magnetic pulse compaction and other field-assisted sintering techniques. Includes an in-depth analysis of all major field-assisted sintering techniques; Explains new techniques and approaches for material treatment; Provides detailed descriptions of spark plasma sintering, microwave sintering, high-voltage consolidation, magnetic pulse compaction, and various other approaches when field-assisted treatment is applied.




Titanium Powder Metallurgy


Book Description

Titanium Powder Metallurgy contains the most comprehensive and authoritative information for, and understanding of, all key issues of titanium powder metallurgy (Ti PM). It summarizes the past, reviews the present and discusses the future of the science and technology of Ti PM while providing the world titanium community with a unique and comprehensive book covering all important aspects of titanium powder metallurgy, including powder production, powder processing, green shape formation, consolidation, property evaluation, current industrial applications and future developments. It documents the fundamental understanding and technological developments achieved since 1937 and demonstrates why powder metallurgy now offers a cost-effective approach to the near net or net shape fabrication of titanium, titanium alloys and titanium metal matrix composites for a wide variety of industrial applications. - Provides a comprehensive and in-depth treatment of the science, technology and industrial practice of titanium powder metallurgy - Each chapter is delivered by the most knowledgeable expert on the topic, half from industry and half from academia, including several pioneers in the field, representing our current knowledge base of Ti PM. - Includes a critical review of the current key fundamental and technical issues of Ti PM. - Fills a critical knowledge gap in powder metal science and engineering and in the manufacture of titanium metal and alloys




Sintering of Functional Materials


Book Description

Powder-based materials and treatment technologies rank high in contemporary scientific-technical progress due to their numerous significant technoeconomic qualities. Sintering of such materials allows saving on materials and lowering the cost price of the product, as well as manufacturing complex composite materials with unique combinations of qualities. Materials of record high values of some physic-mechanical and also biochemical characteristics can be obtained owing to structural peculiarities of super dispersed condition. Sintering of functional materials for innovative perspectives in automotive and aeronautical engineering, space technology, lightweight construction, mechanical engineering, modern design, and many other applications requires established relationship in the materials-process-properties system. Therefore, the industry being interested in understanding theoretical modeling, and control over behavior of such powdered materials has promoted the research activities of this manuscript's authors.




Ceramic Lasers


Book Description

Until recently, ceramic materials were considered unsuitable for optics due to the numerous scattering sources, such as grain boundaries and residual pores. However, in the 1990s the technology to generate a coherent beam from ceramic materials was developed, and a highly efficient laser oscillation was realized. In the future, the technology derived from the development of the ceramic laser could be used to develop new functional passive and active optics. Co-authored by one of the pioneers of this field, the book describes the fabrication technology and theoretical characterization of ceramic material properties. It describes novel types of solid lasers and other optics using ceramic materials to demonstrate the application of ceramic gain media in the generation of coherent beams and light amplification. This is an invaluable guide for physicists, materials scientists and engineers working on laser ceramics.




Sintering of Ceramics


Book Description

The chapters covered in this book include emerging new techniques on sintering. Major experts in this field contributed to this book and presented their research. Topics covered in this publication include Spark plasma sintering, Magnetic Pulsed compaction, Low Temperature Co-fired Ceramic technology for the preparation of 3-dimesinal circuits, Microwave sintering of thermistor ceramics, Synthesis of Bio-compatible ceramics, Sintering of Rare Earth Doped Bismuth Titanate Ceramics prepared by Soft Combustion, nanostructured ceramics, alternative solid-state reaction routes yielding densified bulk ceramics and nanopowders, Sintering of intermetallic superconductors such as MgB2, impurity doping in luminescence phosphors synthesized using soft techniques, etc. Other advanced sintering techniques such as radiation thermal sintering for the manufacture of thin film solid oxide fuel cells are also described.




High-Energy Ball Milling


Book Description

Mechanochemical processing is a novel and cost effective method of producing a wide range of nanopowders. It involves the use of a high energy ball mill to initiate chemical reactions and structural changes. High energy ball milling: Mechanochemical processing of nanopowders reviews the latest techniques in mechanochemistry and how they can be applied to the synthesis and processing of various high-tech materials.Part one discusses the basic science of mechanochemistry with chapters on such topics as the mechanism and kinetics of mechanochemical processes, kinetic behaviour in mechanochemically-induced structural and chemical transformations and materials design through mechanochemical processing. Part two reviews mechanochemical treatment of different materials including synthesis of complex ceramic oxides, production of intermetallic compound powders, synthesis of organic compounds, synthesis of metallic-ceramic composite powders and activation of covalent bond-based materials. Part three covers mechanochemical processes in metal powder systems and other applications with coverage of topics such as plating and surface modification using ultrasonic vibrations, activated powders as precursors for spark plasma sintering, titanium dioxide photocatalyst synthesis by mechanochemical doping and synthesis of materials for lithium-ion batteries.With its distinguished editor and international team of contributors, High energy ball milling: Mechanochemical processing of nanopowders is a standard reference for all those involved in the production of ceramic and metallic components using sintering and other powder metallurgy techniques to produce net shape components. - Examines the latest techniques in mechanochemistry and how they can be applied to the synthesis and processing of various high-tech materials - Discusses the basic science of mechanochemistry including kinetic behaviour, processes and mechanisms and materials design through mechanochemical processing - Reviews mechanochemical treatment of different materials including synthesis of ceramic oxides, organic compounds and metallic-ceramic composite powders




Cathodic Arcs


Book Description

Cathodic arcs are among the longest studied yet least understood objects in science. Plasma-generating, tiny spots appear on the cathode; they are highly dynamic and hard to control. With an approach emphasizing the fractal character of cathode spots, strongly fluctuating plasma properties are described such as the presence of multiply charged ions that move with supersonic velocity. Richly illustrated, the book also deals with practical issues, such as arc source construction, macroparticle removal, and the synthesis of dense, well adherent coatings. The book spans a bridge from plasma physics to coatings technology based on energetic condensation, appealing to scientists, practitioners and graduate students alike.